LagrangeEuler
- 711
- 22
The Rushbrooke inequality: H=0, T\rightarrow T_c^-
C_H \geq \frac{T\{(\frac{\partial M}{\partial T})_H\}^2}{\chi_T}
\epsilon=\frac{T-T_c}{T_c}
C_H \sim (-\epsilon)^{-\alpha'}
\chi_T \sim (-\epsilon)^{-\gamma'}
M \sim (-\epsilon)^{\beta}
(\frac{\partial M}{\partial T})_H \sim (-\epsilon)^{\beta-1}
(-\epsilon)^{-\alpha'} \geq \frac{(-\epsilon)^{2\beta-2}}{(-\epsilon)^{-\gamma'}}
and we get Rushbrooke inequality
\alpha'+2\beta+\gamma' \geq 2
My only problem here is first step
C_H \geq \frac{T\{(\frac{\partial M}{\partial T})_H\}^2}{\chi_T}
we get this from identity
\chi_T(C_H-C_M)=T\alpha_H^2
But I don't know how?
C_H \geq \frac{T\{(\frac{\partial M}{\partial T})_H\}^2}{\chi_T}
\epsilon=\frac{T-T_c}{T_c}
C_H \sim (-\epsilon)^{-\alpha'}
\chi_T \sim (-\epsilon)^{-\gamma'}
M \sim (-\epsilon)^{\beta}
(\frac{\partial M}{\partial T})_H \sim (-\epsilon)^{\beta-1}
(-\epsilon)^{-\alpha'} \geq \frac{(-\epsilon)^{2\beta-2}}{(-\epsilon)^{-\gamma'}}
and we get Rushbrooke inequality
\alpha'+2\beta+\gamma' \geq 2
My only problem here is first step
C_H \geq \frac{T\{(\frac{\partial M}{\partial T})_H\}^2}{\chi_T}
we get this from identity
\chi_T(C_H-C_M)=T\alpha_H^2
But I don't know how?