Lynne
- 12
- 0
Homework Statement
Determine function f(x)=\frac{\sqrt[3]{x-4}}{x-1} critical points and find max and min value in given interval [2; 12]
The Attempt at a Solution
1) I've to find derivative:
f(x)'=\frac{(\sqrt[3]{x-4})' (x-1)-(\sqrt[3]{x-4})(x-1)'}{(x-1)^2}= \dfrac{\dfrac{1}{3} (x-4)^{\frac{-2}{3}} (x-4)'(x-1) - (x-4)^{\frac{1}{3}}}{(x-1)^2}= \dfrac{\dfrac{1}{3} (x-4)^{\frac{-2}{3}}(x-1) - (x-4)^{\frac{1}{3}}}{(x-1)^2}
2)Critical points are:
a) 2 and 12
b) \neg f'(x) if x=1
c) \dfrac{\dfrac{1}{3} (x-4)^{\frac{-2}{3}}(x-1) - (x-4)^{\frac{1}{3}}}{(x-1)^2}=0
here I stopped