Critical Points of f(x)=\frac{\sqrt[3]{x-4}}{x-1} - Max/Min Value

Lynne
Messages
12
Reaction score
0

Homework Statement


Determine function f(x)=\frac{\sqrt[3]{x-4}}{x-1} critical points and find max and min value in given interval [2; 12]

The Attempt at a Solution



1) I've to find derivative:

f(x)'=\frac{(\sqrt[3]{x-4})' (x-1)-(\sqrt[3]{x-4})(x-1)'}{(x-1)^2}= \dfrac{\dfrac{1}{3} (x-4)^{\frac{-2}{3}} (x-4)'(x-1) - (x-4)^{\frac{1}{3}}}{(x-1)^2}= \dfrac{\dfrac{1}{3} (x-4)^{\frac{-2}{3}}(x-1) - (x-4)^{\frac{1}{3}}}{(x-1)^2}

2)Critical points are:

a) 2 and 12

b) \neg f'(x) if x=1

c) \dfrac{\dfrac{1}{3} (x-4)^{\frac{-2}{3}}(x-1) - (x-4)^{\frac{1}{3}}}{(x-1)^2}=0

here I stopped
 
Physics news on Phys.org
You are missing a critical point. You have to keep simplifying that expression to see it. Try multiplying numerator and denominator by (x-4)^(2/3).
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top