I Curious formula for elliptical polarisation

AI Thread Summary
The discussion centers on deriving a new relation for elliptical polarization in microscopy, specifically relating the Jones vector to the complex azimuth. The formula presented, w=1/2(2ψ+gd(2iθ), connects the complex azimuth w to the real azimuth ψ and ellipticity θ, with the Gudermannian function playing a key role. A reference to Azzam and Bashara's work on ellipsometry is provided, highlighting a similar formula that confirms the derivation's validity. The conversation emphasizes the advantages of expressing w in terms of its real and imaginary components. Overall, the thread explores the mathematical relationships in polarization microscopy and seeks further references for the derived formula.
DrDu
Science Advisor
Messages
6,421
Reaction score
1,003
Recently, I have been playing with polarisation microscopy and the measuring of elliptical polarisation. Standard treatments, like that in Born and Wolf, are usually a mayhem of all kinds of trigonometric functions. Now I derived a nice relation, which I didn't find in literature, although I am quite sure that it has been derived numerous times. Here it is:

Suppose we are given a Jones vector ##(a, b)^T## characterizing the polarization direction in the plane perpendicular to the wavevektor. In general, ##a## and ##b## are complex numbers.
The elliptical polarisation is determined by the ratio ##b/a## or equivalently the complex azimuth ##w= \arctan(b/a)##. Usually, one uses the real azimuth ##\psi## and the ellipticity ##\theta## to characterize the polarisation state.

Now the two descriptions are related as ##w=1/2(2\psi+\mathrm{gd}(2i\theta))## where "gd" stands for a little known function called the Gudermannian function:
https://en.wikipedia.org/wiki/Gudermannian_function
whose most useful definition here is ##\mathrm{gd}(x)=2\arctan⁡(\tanh⁡(x/2))##

It is clear that ##\psi## is the the real azimuth if ##\theta=0## and also for ##\psi=0## one finds easily that
##|b/a| = \tan(\theta)##. Forming the density matrix, one can calculate the Stokes parameters and gets the correct spherical coordinates in terms of ##2\psi## and ##2\theta## for the location on the Poincaré sphere.

Can anybody point me to a reference for this formula?
 
Science news on Phys.org
Not sure which formula you are referring to, but if you mean w=1/2(2\psi+\mathrm{gd}(2i\theta)), a similar formula appears in Azzam and Bashara's "Ellipsometry and Polarized light", eqn 1.79 (using your variables):

w = [tan(ψ)+i tan(θ)]/[1-i tan(ψ)tan(θ)]
 
Andy Resnick said:
Not sure which formula you are referring to, but if you mean w=1/2(2\psi+\mathrm{gd}(2i\theta)), a similar formula appears in Azzam and Bashara's "Ellipsometry and Polarized light", eqn 1.79 (using your variables):

w = [tan(ψ)+i tan(θ)]/[1-i tan(ψ)tan(θ)]
Thank you! Yes, this is clearly equivalent (supposing you forgot a tangent on the LHS). Writing ##i\tan(\theta)=\tan (\arctan(i \tan(\theta)))=\tan (i\mathrm{artanh}(\tan(\theta)))## one can use the addition theorem for the tangent to obtain ##w= \psi + i \mathrm{artanh}(\tan(\theta))##. The advantage of the latter formula is that you have a direct split of w into real and imaginary part. Usually, it is easy to derive expressions for linearly polarized light and most of them still hold when the azimuth becomes complex. I'll have a look at this book.
 
Thread 'Simple math model for a Particle Image Velocimetry system'
Hello togehter, I am new to this forum and hope this post followed all the guidelines here (I tried to summarized my issue as clean as possible, two pictures are attached). I would appreciate every help: I am doing research on a Particle Image Velocimetry (PIV) system. For this I want to set a simple math model for the system. I hope you can help me out. Regarding this I have 2 main Questions. 1. I am trying to find a math model which is describing what is happening in a simple Particle...
I would like to use a pentaprism with some amount of magnification. The pentaprism will be used to reflect a real image at 90 degrees angle but I also want the reflected image to appear larger. The distance between the prism and the real image is about 70cm. The pentaprism has two reflecting sides (surfaces) with mirrored coating and two refracting sides. I understand that one of the four sides needs to be curved (spherical curvature) to achieve the magnification effect. But which of the...
Back
Top