Uniquebum
- 53
- 1
Homework Statement
Undamped oscillator's period T_0 = 12s. Damped oscillator's angular frequency \omega_1 = \omega_0 * 97\% where \omega_0 is the angular frequency of the undamped oscillator's. What is the ratio of consecutive maximum amplitudes?
Homework Equations
Equation of damped oscillator's motion:
x = e^{-\alpha t}A_0sin(\omega_1 t + \phi)
where \alpha = \frac{b}{2m} where b =damping constant.
The Attempt at a Solution
Firstly, were' talking about maximums so we can disregard the sin() function.
Calculating \omega_1 = \omega_0 * 0.97 = \frac{2\pi}{T_0}0.97.
Thus for the damped oscillator T_1 = \frac{T_0}{0.97}
Then we could write something as follows:
\frac{x_0}{x_1} = \frac{e^{-\alpha t_0}A_0}{e^{-\alpha t_1}A_0}
but we have no clue of alpha nor about x_0 and x_1... Any help appreciated.