Dampened Harmonic Motion and oscillation

AI Thread Summary
The discussion focuses on solving a problem related to dampened harmonic motion, specifically calculating the time it takes for the total energy of an oscillator to decrease to 50% of its initial value. Participants emphasize the importance of understanding the relationship between amplitude reduction and energy loss, using the hint provided in the problem statement. The correct approach involves setting up equations for initial and final energy, leading to the realization that the amplitude diminishes by a factor of 0.985 with each oscillation. Through collaboration, participants clarify the necessary mathematical steps, including the use of natural logarithms to solve for the number of oscillations required. Ultimately, the discussion highlights the significance of correctly applying formulas and understanding the underlying physics of dampened oscillations.
seichan
Messages
31
Reaction score
0
[SOLVED] Dampened Harmonic Motion

Homework Statement



A mass M is suspended from a spring and oscillates with a period of 0.900 s. Each complete oscillation results in an amplitude reduction of a factor of 0.985 due to a small velocity dependent frictional effect. Calculate the time it takes for the total energy of the oscillator to decrease to 50 percent of its initial value. HINT: The amplitude after N oscillations=(initial amplitude)x(factor)^N.

Homework Equations


Newton's Second Law dampened- F=-kx-bv
x(t)=Ae^(-bt/2m)cos((dw/dt)t)
Energy=1/2kA^2 OR 1/2kv^2 [NOT constant]

The Attempt at a Solution


Alright, I am having a difficult time setting this problem up. I do not know how to use the hint either... So far, I have set it up this way:
F=-kx-bv
The integral of this is equal to work. Negative work is equal to KE.
-1/2kx^2+1/2bv^2=1/2kv^2
I realized that this is as far as I can get with this, so I tried to use the x(t) equation. However, we are not given a value for the mass. I am very frustrated right now so any direction you can give would be very much appreciated.
 
Physics news on Phys.org
Hi Seichan,

I believe the correct approach is to use the total energy is (1/2)kA^2. You know how much the amplitude decreases with each oscillation, you know how long each oscillation takes, and you know you need the total energy to be 50%. Try that and see if it works for you.
 
Thank you. I do not where to go with that, though, because of having no initial Amplitude. I have, however, derived that I am looking for t=ln(2)/(2*angular acceleration). However, I do not know how to get the angular acceleration without having a known mass value. (a. acceleration=b/2m) Any ideas? Thanks again so much.
 
You do not need the initial amplitude, because you do not need the initial energy. All they ask is for the energy to decrease by 50%. Call the initial amplitude A_0. Now they want the energy to decrease by 50%. Write an expression for the initial energy, write an expression for the final energy, and then relate them. What do you get?
 
(.5k(A*.985^n))/2=.5kA
.5(A*.985^n)=A
A*.985^n=2A
.985^n=A

I feel like I'm missing something there, due to the fact that answer makes no sense. Thanks for baring with me.
 
I think you have a few mistakes here.

Initial energy is 0.5 k A^2

final energy is 0.5 k (.985^N A)^2

final energy = 0.5 initial energy

(Also in going from the third to the fourth line of your post the A's would have cancelled, which is why you don't need them.)
 
Alright. I got you there. My new arithmatic looks like this:

.5kA^2=[.5k(.985^n*A)^2]/2
kA^2=.5k(.985^n*A)^2
2A^2=(.985^n*A)(.985^n*A)
2=(.985^n)^2
ln(2)=.985^n

Ack! I'm truly sorry- it's been a long night and barely anything seems coherent anymore...
 
That's close, but there's two last issues here. The final energy is 1/2 the initial energy, so you need the first line to be

(1/2)* .5kA^2=[.5k(.985^n*A)^2]

Working down, we get a line like your fourth line, which is (doing your steps but starting with the above):

(1/2) = 0.985 ^(2n)

When you take the natural log, the exponent comes down:

ln(1/2) = 2n ln(0.985)
 
Thank you so much again. That was correct =) Your help was greatly appreciated!
 
  • #10
Great! Glad I could help.
 
Back
Top