DE: Resistant force, 2 equations

  • Thread starter Thread starter rocomath
  • Start date Start date
  • Tags Tags
    Force
rocomath
Messages
1,752
Reaction score
1
So I'm given two equations, but not really told when it's appropriate to use one over the other.

1) The resistance is proportional to the velocity

F=-mg-rv

2) The magnitude of the resistance is proportional to the square of the velocity

"the magnitude" ... what's the difference?

F=-mg-k|v|v
 
Physics news on Phys.org
Are some of these quantities suppose to be vectors?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top