Debunking Hydrogen Car Lunacy: The Truth About Pollution

  • Thread starter Thread starter esbo
  • Start date Start date
  • Tags Tags
    Car Hydrogen
AI Thread Summary
The discussion highlights the complexities surrounding hydrogen cars and their environmental impact compared to battery electric vehicles. While hydrogen fuel cells produce no direct emissions, the production of hydrogen often relies on fossil fuels, potentially negating their pollution benefits. Hydrogen is viewed as an energy carrier that could utilize renewable sources, but significant challenges remain in its storage, distribution, and production efficiency. Batteries currently have a more established infrastructure and better overall efficiency, although they also face issues like weight and disposal concerns. Ultimately, both technologies require further development and innovation to address their respective limitations and achieve a sustainable transportation future.
esbo
Messages
86
Reaction score
0
I have seen some 'stuff' saying hydogen is the way forward in term of pollution,
however, whils the cars themselves may not polute, in terms of CO2, I would
bet a sizeable amount that the energy required to produce the hydrogen produces
as much, if not more pollution, than if the cars ran on gasoline.
 
Earth sciences news on Phys.org
Hydrogen is an energy carrier that allows alternative forms of energy such as wind, solar, geothermal and nuclear power, and biomass, to be used as a pollution-free energy supply for the transportation sector. But hydrogen is only an energy carrier and not an energy source in the same way that petroleum is today. So you are correct: We need to solve the source problem in order for a hydrogen economy to be practical.

BTW, this is day one of Hydrogen 101. The people who are serious about moving to a hydrogen economy understand all of this.

Right now Iceland has begun to convert entirely to hydrogen, but they have plenty of geothermal power.

There are processes that can produce hydrogen as a byproduct, and we need to address the practical aspects of hydrogen storage and distribution, so it probably makes sense to explore the practical application of hydrogen technologies on a limited basis, for now.
 
Last edited:
Most new ideas and innovations have a multitude of problems. Think back to when the first combustion engine was introduced. It must have been the most uneconomical piece of machinary ever, not to think about the early gasoline refinaries and the pollution they generated. But life today is unthinkable without it. I think hydrogen is not a BAD idea but rather a NEW one, that can be refined to levels beyond our imagination. Think how batteries has evolved in the last ten years due to cell phones, give new ideas a chance. I can imagine the critisism Leonardo Davinci got when he planned the first helicopter, maybe if he had more support and achieved flight back in the day, our lives would be much different.
 
I have a hard time seeing what advantage hydrogen has over batteries for vehicles. :confused:
 
As well as being heavy, batteries are chemical nightmares. They have a limited life and at the end of that life must be disposed of, at which time they become very UNgreen. Currently they are just one more example of "feel good green".
 
But battery car avoids the main problems that hydrogen has. There is already a distribution grid and batteries seems to become better quickly. Plus the overall efficiency of batteries are much better than hydrogen.

Hydrogen seems to have a lot more obstacles to overcome, while batteries "only" need to get lighter and cleaner.
 
Azael said:
while batteries "only" need to get lighter and cleaner.
And greener to make and recycle and able to be completely re-charged at a filling station in a couple of minutes. One of the big advantages of hydrogen is that you can use the existing infrastructure of gas stations.

Of course hydrogen has a few technical problems of it's own !
 
Go H2 Go

If the only problem of distribution is money ... Then this is a non-problem.

( how much is spent on weapons per year? ) Ha ... I think I can find the money.
 
The main 'advantage' of hydrogen and biofuel is that they fit the current business model of large production companies and existing infrastructure of refineries/tankers/gas stations.
The problem with batteries is that people will think and plan short trips around the city and might consider public transport instead. It also means the oil companies shut down and the power companies become all powerfull - unlikely to happen!
 
  • #10
Um batteries need to be charged and, unless i am mistaken, most electricity is still produced through the burning of fossil fuels. So, using batteries does not eliminate the carbon footprint that automobiles produce, it might reduce it, and re-distribute it... but there will be a greater demand for electricity, and again, unless i am mistaken, that is already a problem. Whereas we cannot say how we will produce a viable amount of hydrogen.
 
  • #11
Hydrogen is just a battery alternative - both require you to generate the energy somewhere and use it in the car.
It's simply a question of which offers the most convenience in a car (size, power density, refilling time) and wether it it easier to transmit electricity long distances from cheap sources of power or transport hydrogen.
The advantages of either is that you can generate electricity efficently in large facilities and have less pollution concentrated in cities. It's the reason we have grid electricity to our homes and offices instead of individual gasoline generators on the sidewalk.
 
  • #12
Well, I don't think that can be argued effectively without the technology being researched further, we don't have hydrogen being mass produced for this purpose, and for that matter, with respect to the replacement of all IC engines, we don't mass produce the required batteries.
As for distribution of power, we could have battery stations in the same way we have Petrol stations, but instead of charging a battery, you just swap it with a charged one, that the battery station collects (or gets delivered) from a central source. Carrying on your explanation of Grid power vs. Sidewalk generators.

Although i think i would say that coal fired power stations may be more efficient than a portable petroleum generator. But this is not more than hopeful supposition.
 
  • #13
mgb_phys said:
Hydrogen is just a battery alternative - both require you to generate the energy somewhere and use it in the car.

That sounds so dismissive !?? Just a battery alternative ? :(

Alternative is the word of preference I promote. Enough of 'stay the course', time to adapt.
 
  • #14
>Alfi
An electrico-chemical battery, hydrogen, a fly wheel or even a tank of compressed air are all just energy storage systems - rather than fuelled engines. Which you use is just a an engineering question.

>linton
We could have battery swap outs - but without a MAJOR change in battery technology the batteries are going to be large and heavy enough to be a major structural part of the vehicle. Certainly requiring some sort of powered machine to swap them, you aren't going to pop-out a laptop size unit at the gas station and get a new one from a vending machine. There is also going to be an issue of all vehicles (from a smart car to a Ford F350) taking the same size/shape of battery and mounting it in such a way that it can be accessed with the same machine quickly and easily.
There are also issues of the value of the battey being much greater than the value of the power it stores and th elimited life. None of these are impossible, some of them are solved for LPG cylinder sales for example.

I suspect there will be multiple solutions:
Plug-in small electric Smart cars for city commuting, recharged at parking spots.
Hydrogen for larger family / performance cars with fuel stations on highways.
Biodiesel for heavy commercial vehicles.

And hopefully a few more bicycles ;-)
 
  • #15
Right now there is a capacitor being developed at MIT (with help from Ford Motor Company) that could replace batteries. It wuold store as much electrical energy as a Lithium-Ion Battery of the same size and weight, but because it is a capacitor, it would charge quick and last longer than the vehicle. If and when this gets developed and mass-produced, the electric car will become a viable technology. I just I don't think batteries are ever going to be a reasonable alternative for powering vehicles, for the reasons already stated.

But this cap would be made to the same dimensions as the batteries currently used in hybrids. I'm hoping plug-in hybrids become common just about the time the cap makes it to market. Owners who are dissalussioned at the end of the service-life of their first battery could replace it with the cap, and suddenly find themselves in possession of a storage device that they will never need to replace, that isn't effected by cold weather, and (if they have a high-current outlet available) can be fully charged in an hour or so.

Then, service stations (seeing a chance at a profit) will start putting in a "plug" in addition to their pumps. This would be an ultra-high Wattage source (the kind you can't get in a residence) that can charge a cap in a cuople of minutes. They would charge a little more per KWhr than they are paying the utility, which comes to an equivalent of about $1/gal, and their customer traffic would increase. Soon, drivers with plug-in hybrids will start arranging their daily drives so that they can get to the staion before the charge runs out and the IC engnie comes on, and any station that wants to stay in business will have to have a plug.

As I see it, this is the most likely scenario for switching to electric. Not perfectly green, but I've run the numbers and its less than half the CO2 of gasoline.
 
Last edited:
  • #16
Even with supercaps replacing batteries it's still tricky to quickly charge a car.
Gas/petrol stores around 35MJ/litre - so a typical 10gal fuel tank = 1.75 GJ
You can refill this tank in a couple of mins - pouring gas at 0.5L/s is equivalent to transferring 20MW of power. Even if super caps could absorb this rate it's going to take some fairly chunky jump leads at the gas station.

Supercaps also have issues of high leakage rates and low breakdown voltages - they are probably best used for 'buffer memory' storage in a regenerative braking system to avoid shallow charging/discharge cycles on the main battery. I imagine 'turn off while idle' and regenerative breaking electric startup/slow speed will become standard in the next 10years - certainly in small in-town cars.
 
Last edited:
  • #17
Azael said:
But battery car avoids the main problems that hydrogen has. There is already a distribution grid

Actually, there's not. We would have to effectively build another one [double the existing capacity or more] in order to supply and carry the power that would be required. As it is we have areas that experience brown-outs and temporary black-outs during periods of high demand on the grid, so we can barely keep up now.

Based on the current energy demand, it would probably require 200 years to build enough nuclear plants to power a nation of electric cars, and that assumes a dedicated national effort and that its even possible politically!
 
Last edited:
  • #18
Oh dear virtually every body seems to have missed the main point that fossil fuel is required to make hydrogen and charge batteries. - Ah well dream on.
 
  • #19
No we haven't. Although the problem is the same for either battery/hydrogen - using either technology gives you some advantages.

You get to generate 'energy' in bulk in a more efficent plant. Which ideally would be nuclear.

Even with fossil fuels you isolate the pollution in a single source where you can fit smokestacks/scrubbers to reduce the effect rather than spread it around a city at ankle height.

You can generate the hydrogen where power is cheap and ship the 'energy' to the customer even where the distance makes a power line impractical eg. Iceland=geothermal, Middle east=solar, Canada=hydro.

As I said before - if large scale power generation and distribution is so much less efficent than gasoline, why don't we all have 3rd-world Honda generators outside out houses!
 
  • #20
esbo said:
Oh dear virtually every body seems to have missed the main point that fossil fuel is required to make hydrogen and charge batteries. - Ah well dream on.

Ivan Seeking said:
We need to solve the source problem in order for a hydrogen economy to be practical.

People do understand this. You should read what has been posted.
 
  • #21
Batteries have many problems. First of all they are very heavy, I would wonder if they are more efficient, when the addition weight of the vehicle is factored in, than the hydrogen fuel cel process. Secondly, batteries are not a renewable resource.

Burning fossil fuels is not necessary to make hydrogen. The best way to make it would probably be using wind energy, which could probably be made to make a very large amount of our hydrogen. In fact some states are so well suited for wind energy methods that it might even be worth it to use the extra energy from the wind turbines to make hydrogen so that the hydrogen could be burned when needed either for energy production or for fuel.

Someone mentioned swapping batteries at the charging station. That is a joke. First of all, you need a pretty hefty load of batteries to run your car, secondly, making them easily removable isn't entirely practical.

One thing which would be neat about hydrogen cars, is that if necessary, or practical, a consumer could make his own fuel out of water. Say I lived on a windy piece of land, or a very sunny piece of land, or say I had a large downhill stream running through my property. I could generate my own hydrogen, and be completely self sufficient, at least until I ventured further than a half a tank away. The idea of being able to do this is neat to me, but probably not a perk for the industry.
 
Last edited:
  • #22
Farmers would be happy, because their land can be used for both fuel production and food production at the same time, and without inflating food prices. They could also ditch their diesel tractors and run hydrogen instead. That is a win win win situation if you ask me.
 
  • #23
W3pcq said:
In fact some states are so well suited for wind energy methods that it might even be worth it to use the extra energy from the wind turbines to make hydrogen
That's one of the big advantages of hydrogen over electric - it is a good storage medium.
Currently it's rather difficult to store large amounts of electricity, pumped storage schemes are the best but aren't practical in most cities. Hydrogen is a good solution for making use of intermittent free power like wind.

One thing which would be neat about hydrogen cars, is that if necessary, or practical, a consumer could make his own fuel out of water.
Some fuel cell based systems allow you to make hydrogen with the same hardware that burns it - so making a self contained battery.
 
  • #24
Another reason that a hydrogen car would be a good thing, is that hydrogen is a very high quality fuel. I have a hard time seeing a battery powered car competing with a hydrogen powered car.

One cool feature that could be added to a hydrogen car, is a portable solar powered hydrogen generator, or even a small one built into the car, and maybe that new plastic solar panel material could cover your entire car body. If you broke down in the middle nowhere, you could generate enough fuel to make it to the next station. One cubic foot of water contains so much hydrogen, that all the water you would need to supply that feature could fit into a small water bottle.
 
  • #25
Well as generating hydrogen generates carbon you are back to square one, yes you could
concentrate the carbon production in a central place, but we do that anyway with our
power stations so you have not changed much there infact you have, made it worse
as there are more loses as you convert to hydrogen and then convert back into electricity.

SO you are going
fossil - electric -hydrogen - electric
when
fossil - electric
which we have now cuts out two wasteful stages.
 
  • #26
Why do keep insisting that we would have to use carbon based fuels to make hydrogen. I'm pretty sure that coal power plants are old news. What makes you think that burning fossil fuels would be necessary?

Generating hydrogen does not generate carbon. Generating hydrogen, generates oxygen. Maybe you need to take a chemistry class.

What is wrong with:

Wind-electricity-hydrogen-combustion
 
Last edited:
  • #27
Ivan Seeking said:
Actually, there's not. We would have to effectively build another one [double the existing capacity or more] in order to supply and carry the power that would be required. As it is we have areas that experience brown-outs and temporary black-outs during periods of high demand on the grid, so we can barely keep up now.

Based on the current energy demand, it would probably require 200 years to build enough nuclear plants to power a nation of electric cars, and that assumes a dedicated national effort and that its even possible politically!

I think you are overestimating the electricity needs for the car fleet or american driving habits are completely different than here in sweden. In sweden 45 TWh of fossil energy is used in cars. If they where replaced by battery hybrids the total energy need would shrink to 10TWh electricity. Thats less than what a EPR reactor produces in a year and about 1/15 of the electricity produced in sweden today. Sweden is a large country with a small population and we consume per capita more gas then the rest of europe.

Even if america needs 200 reactors that can be built in far less time than 200 years. How long did it take to build the 100+ reactors running in the states today? 30 years?
 
Last edited:
  • #28
W3pcq said:
Why do keep insisting that we would have to use carbon based fuels to make hydrogen. I'm pretty sure that coal power plants are old news. What makes you think that burning fossil fuels would be necessary?

Generating hydrogen does not generate carbon. Generating hydrogen, generates oxygen. Maybe you need to take a chemistry class.

What is wrong with:

Wind-electricity-hydrogen-combustion

Well you may as well stop at

Wind electricity.
And we already have that
As we already have
Nuclear electric
and
Hydro electric.

Now suggesting adding
electric - hydrogen - electric
looks slightly inefficient.

It does not look like much different from what we already have really.
 
  • #29
esbo said:
Well you may as well stop at

Wind electricity.
And we already have that
As we already have
Nuclear electric
and
Hydro electric.

Now suggesting adding
electric - hydrogen - electric
looks slightly inefficient.

It does not look like much different from what we already have really.

We would not be converting the hydrogen back into electricity to run the car, the hydrogen would be burned. Also we do not already have hydrogen cars available to the public.

The potential for wind energy has barely been exploited.

Also, what choice will we have when our oil runs out? Natural gas will last us a while, but as supplies dwindle, prices will soar higher and higher. It has already begun to be more costly to drill for oil because the easiest places have already been exploited. Now we will be trying to get the remaining "scraps left" which are only left because of difficulty. With almost free energy available to us in the form of wind, why not make fuel with it as well?

You may call hydrogen fuel for vehicles lunacy, but the fact is that it is the future, and there is no better alternative known.
 
Last edited:
  • #30
Azael said:
I think you are overestimating the electricity needs for the car fleet or american driving habits are completely different than here in sweden. In sweden 45 TWh of fossil energy is used in cars. If they where replaced by battery hybrids the total energy need would shrink to 10TWh electricity. Thats less than what a EPR reactor produces in a year and about 1/15 of the electricity produced in sweden today. Sweden is a large country with a small population and we consume per capita more gas then the rest of europe.

Even if america needs 200 reactors that can be built in far less time than 200 years. How long did it take to build the 100+ reactors running in the states today? 30 years?

We are showing about 1.4E19 joules of electrical energy produced annually.
http://www.eia.doe.gov/emeu/aer/pdf/pages/sec8_4.pdf

We use about 400E6 gallons of gasoline per day, so at 125,000 BTU per gallon, I get 1.9E19 joules per year. Now, in the case of electric cars we might expect greater efficiency by a factor of 70/30 or so, but we are still in the ball park, and we still have to factor in the dust to dust efficiency of batteries, etc, which also affects the grid and the demand for fuel. Also, we haven't considered diesel fuel.
 
Last edited:
  • #31
The existing 100 nuclear power plants provide about 20% of our electrical power,
http://www.eia.doe.gov/emeu/aer/pdf/pages/sec8_6.pdf
so in order to provide 5 times as much power in addition to the existing supply, we would need another 500 nuclear power plants of similar size. So if we built 100 plants in 30 years during the days of naive innocence wrt nuclear power, back when it was "too cheap to meter", perhaps 200 years to build 5 times as many is reasonable given the realities of nuclear power today – most people don’t want to live near a nuclear power plant.

As a side note: Can you even imagine creating a failsafe system for the fueling, operation, and decomissioning of 500 commercial nuclear plants? I can't. No system is perfect. Sooner or later there will be a catastrophe. Also, what is the lifespan of a nuclear power plant? It's probably not even possible to build that many plants before the first ones built need to be decomissioned.
 
Last edited:
  • #32
A vehicle could be made with solar panel material covering the entire body, which slowly replenishes your fuel supply giving you better efficiency. When you leave your car parked in the sun for x amount of time, you come back, and your tank is now full. For the occasional use driver, a good portion of their fuel could be supplied in this way.

Hybrid technology could also be applied using stop and go/coasting downhill to help replenish your fuel supply as well.

Filling stations could use solar tech as well to boost their supplies, further reducing demand.
 
  • #33
Azael said:
In sweden 45 TWh of fossil energy is used in cars. If they where replaced by battery hybrids the total energy need would shrink to 10TWh electricity

How did you get those numbers?
 
  • #34
W3pcq said:
A vehicle could be made with solar panel material covering the entire body, which slowly replenishes your fuel supply giving you better efficiency.
Probably not worth the weight at the moment. You get about 100W/m^2 for available panels tilted at the sun - so even assuming panels on the roof and sides facing the sun you are only going to generate about 1Hp. If your car uses 100Hp then you are only going to recover about 1% of the energy.

In sunnier regions of the USA this would end up costing you energy as the absorbant solar panels would heat the car and require more air conditioning.
 
  • #35
Here is a link for demand for gasoline by country
http://earthtrends.wri.org/text/energy-resources/variable-291.html

So this looks correct in that your numbers agree: Sweden uses about 1% as much gasoline as the US. But I don't understand how we get to 10TWh from there.

You have about 9.1 million people and we have 301 million, so you have about 3% of the population, however,
84% of the population lives in urban areas, which comprise only 1.3% of the country's total land area
http://en.wikipedia.org/wiki/Sweden

So the relatively high population density in Sweden likely accounts for some of difference - the 300% higher demand for fuel, per capita, in the US.
 
Last edited by a moderator:
  • #36
esbo said:
Well as generating hydrogen generates carbon you are back to square one,

That is not how it will work. The plan is to pursue technologies such as...

Get the hydrogen directly from biomass, such as algae.

Make hydrogen it cracking natural gas with solar power; producing pure carbon powder and pure hydrogen

Collect it as a byproduct of bacterial activity and industrial processes.

Collect it from wind and other power sources in areas too far removed from the point of use for transmission to be practical.

You can learn much more about it here:
https://www.physicsforums.com/showthread.php?t=29373
 
  • #37
mgb_phys said:
Probably not worth the weight at the moment. You get about 100W/m^2 for available panels tilted at the sun - so even assuming panels on the roof and sides facing the sun you are only going to generate about 1Hp. If your car uses 100Hp then you are only going to recover about 1% of the energy.

In sunnier regions of the USA this would end up costing you energy as the absorbant solar panels would heat the car and require more air conditioning.

The world record for thin film solar cell efficiency was broken in march 2008, 19.9% of the suns light into electricity. Thin film cells are very light and flexible. The h. gen. would have some weight, which I hadn't fully considered, but with the hybrid style component, it might be worth it. Maybe not. I would think it could help.

For someone who only drives say 60 mn. per day, say they get 12 hour of sun per day, at one hp, they would over the coarse of the day save 12 horse power worth of fuel meaning maybe 5-10 percent. Cut your driving down to 30 min, and you've got 10-20 percent. Add the hybrid electric component, and tach on a little more. If you wanted to get real high tech, then somehow find a way to use the heat of the engine/exhaust and the body of the car, and use it to generate electricity too, while cooling the engine at the same time.

I know that I have seen solar cars on tv which were even semi kind of fast even, but they probably cost a million dollars, and they probably weigh next to nothing.
 
Last edited:
  • #38
Ivan Seeking said:
How did you get those numbers?

A report by a swedish research institute called elforsk. You can find it here http://www.elforsk.se/rapporter/ShowReport.aspx?DocId=638&Index=D%3a%5cINETPUB%5celforsk4kr9h8d%5cRapporter%5cpdf%5cindex&HitCount=3&hits=6b+6d+95+"

Press the link to the right of "Hela rapporten:" A popup window shows up, ignore the fields and just push the link to the pdf at the bottom of the popup window. At page 11 there is a english summary, unfortunaly the entire report isn't avaible in english.

Ivan Seeking said:
The existing 100 nuclear power plants provide about 20% of our electrical power,
http://www.eia.doe.gov/emeu/aer/pdf/pages/sec8_6.pdf
so in order to provide 5 times as much power in addition to the existing supply, we would need another 500 nuclear power plants of similar size. So if we built 100 plants in 30 years during the days of naive innocence wrt nuclear power, back when it was "too cheap to meter", perhaps 200 years to build 5 times as many is reasonable given the realities of nuclear power today – most people don’t want to live near a nuclear power plant.

Well if certainly is technicaly possible to build in a short timespan. Politicaly who knows. People living around the existing nuclear power plants like them and wants more,(se this http://www.nei.org/resourcesandstats/documentlibrary/newplants/reports/nationalquestionnairefor10mileradius" ) so if they are placed correctly NIMBY can be avoided.

Anything can change quickly now that we are getting near peak oil. A big chunk of the reactors possibly doesn't even need to be light water reactors. Pebble bed reactors are a pretty close in the future technology that is inherently safe and much more efficient. Modular design might make it possible to factory mass produce them instead of as now having to build each LWR on site.


Ivan Seeking said:
As a side note: Can you even imagine creating a failsafe system for the fueling, operation, and decomissioning of 500 commercial nuclear plants? I can't. No system is perfect. Sooner or later there will be a catastrophe. Also, what is the lifespan of a nuclear power plant? It's probably not even possible to build that many plants before the first ones built need to be decomissioned.

What do you consider a catastrophe? Even another TMI incident is extremely unlikely and another TMI isn't a catastrophe. A larger incident than TMI won't happen in a LWR and definately not in the generation 4 designs. There has never been a catastrophe in a western reactor and I can't imagine how one could happen either.

Fueling, operating and decomissioning even as much as 500 nuclear power plants will mean less risk than the risk of currently running the existing coal power plants that kill several tens of thousands of people yearly in the states. The 400+ reactors running today in the world kills no one, the coal power plants around the world kill 500 000 people yearly.

Lifespan for new reactors is 60 years, but its not unlikely that it can be expanded. The current reactors that where suposed to have a life time of 40 years is beeing uprated to 60+ years.

Also I don't se why we would expect that all electricity will be nuclear? A mix is always the best bet. Saying that it would be hard for one single energy source to do it all alone isn't a argument against the energy source itself.
 
Last edited by a moderator:
  • #39
Lurch,

Do you have a link, or source where I could get more info on the capacitor project?

thanks
 
  • #40
Azael said:
A report by a swedish research institute called elforsk. You can find it here http://www.elforsk.se/rapporter/ShowReport.aspx?DocId=638&Index=D%3a%5cINETPUB%5celforsk4kr9h8d%5cRapporter%5cpdf%5cindex&HitCount=3&hits=6b+6d+95+"

Press the link to the right of "Hela rapporten:" A popup window shows up, ignore the fields and just push the link to the pdf at the bottom of the popup window. At page 11 there is a english summary, unfortunaly the entire report isn't avaible in english.

Well, that link doesn't do me any good because I can't read it, but there is something wrong with your numbers. How do we get less than 25% of the demand by going to hybrid electric? Batteries are about 80% efficient, motors are about 90% efficient, which leads us to expect 72% efficiency over about 30% efficiency for a gasoline engine. So how do we get 10/45 from 28/70? Also, you said hybrids [not full electric] which are nowhere near 72% efficient.

Well if certainly is technicaly possible to build in a short timespan. Politicaly who knows. People living around the existing nuclear power plants like them and wants more,(se this http://www.nei.org/resourcesandstats/documentlibrary/newplants/reports/nationalquestionnairefor10mileradius" ) so if they are placed correctly NIMBY can be avoided.

Anything can change quickly now that we are getting near peak oil. A big chunk of the reactors possibly doesn't even need to be light water reactors. Pebble bed reactors are a pretty close in the future technology that is inherently safe and much more efficient. Modular design might make it possible to factory mass produce them instead of as now having to build each LWR on site.




What do you consider a catastrophe? Even another TMI incident is extremely unlikely and another TMI isn't a catastrophe. A larger incident than TMI won't happen in a LWR and definately not in the generation 4 designs. There has never been a catastrophe in a western reactor and I can't imagine how one could happen either.

Fueling, operating and decomissioning even as much as 500 nuclear power plants will mean less risk than the risk of currently running the existing coal power plants that kill several tens of thousands of people yearly in the states. The 400+ reactors running today in the world kills no one, the coal power plants around the world kill 500 000 people yearly.

Lifespan for new reactors is 60 years, but its not unlikely that it can be expanded. The current reactors that where suposed to have a life time of 40 years is beeing uprated to 60+ years.

Also I don't se why we would expect that all electricity will be nuclear? A mix is always the best bet. Saying that it would be hard for one single energy source to do it all alone isn't a argument against the energy source itself.

That is fine and dandy except that you haven't considered terrorism. That is what has changed everything. Now more than ever we need to focus on the containment of nuclear materials; not a massive increase in the processing of these materials making them more available than ever before.

Did you see the recent vidoes of security gaurds at nuclear plants caught sleeping on the job? This is post 911!

I rest my case: No system is perfect. The last thing that we need is a hyperescalation in the processing of nuclear materials. Sooner or later something will go wrong, and when it does your numbers are all out the window. What we need is a safe and sane source of energy - one that doesn't require infinite trust in a bureaucracy.

Note that this argument doesn't apply to only to nuclear technology: Just wait until the Three Gorges Dam fails. That is another example of meteor-like risk: No one dies until millions die.
 
Last edited by a moderator:
  • #41
Also, I would like to see the public reaction to plans to build 500 nuclear plants.

I would also like to see a poll that doesn't have the nuclear power industry as a source.
 
  • #42
Integral said:
As well as being heavy, batteries are chemical nightmares. They have a limited life and at the end of that life must be disposed of, at which time they become very UNgreen. Currently they are just one more example of "feel good green".
Lithium Ion batteries are the current choice for plug-in electric cars. They have a much greater energy density (~1MJ/kg) than traditional lead acids though they're still far short of gasoline (47 MJ/kg). Example: The battery pack in the 220mi range Tesla weighs about ~900lbs. However, the plugin electric is spared the weight of s 200lb twenty gallon gas tank, a complicated transmission, a differential, and pumps for the combustion and lube. Environmentally, Lithium is not a heavy metal so Li-ion is not particular bad for the environment, no more so than the scrap from the car they ride in. I believe the main problems w/ batteries now for E cars are cost, life time, and charge time.
 
  • #43
Ivan Seeking said:
...Right now Iceland has begun to convert entirely to hydrogen, but they have plenty of geothermal power.
Well they've begun to talk about it. :rolleyes: At the moment nothing sponsored by the govt is on the streets there. The three demo busses have been decommissioned after a 3 year run. Per Joseph Romm, Center for Energy & Climate, Iceland is perfect for geothermal electric generation and electric cars, not hydrogen:

...They've decided to go the hydrogen route. I'm a bit skeptical that that will work. I wouldn't be surprised if they woke up to the fact that they would be the perfect place for plug-in hybrids. I mean, the thing to realize about plug-in hybrids is that they use electricity from renewable sources three to four times more efficiently than you get if you run a hydrogen car off renewable power. And that kind of efficiency gain is very hard to beat in the marketplace.
...

The thing to realize about electric cars is that their only limitation is range and speed of refueling. So they are ideal in a small island that doesn't require cars to go, you know, 1,000 miles or 500 miles over a short period of time. So my guess is that electric cars will turn out to be quite attractive in Iceland. They're just going to have to realize that hydrogen isn't all that it's cracked up to be and electric cars are what— all they're cracked up to be.

http://www.pbs.org/wgbh/nova/car/open/inte-romm-21.html
 
Last edited:
  • #44
Ivan Seeking said:
We are showing about 1.4E19 joules of electrical energy produced annually.
http://www.eia.doe.gov/emeu/aer/pdf/pages/sec8_4.pdf

We use about 400E6 gallons of gasoline per day, so at 125,000 BTU per gallon, I get 1.9E19 joules per year.
Those number seem to check, but I am not sure you can go right do power plant shortage from there. Electric transportation proponents often speak of using the grid off-hours to charge the batteries. That is, most existing plants do not currently run at capacity throughout a 24 hr period, there is a lot of idle at night. So though the US generated 1.4e19 Joules/yr it should theoretically be able to able add substantially to that by running 100% at night as well. How much I don't know, but 30% seems reasonable which leaves 0.42e19 J/yr 'at night' just for transportation. Then to compare we need that debated electric car vs ICE efficiency increase: 2:1? 3:1? At a 3:1 improvement in efficiency of electric cars the energy demand is 0.63e19 J/yr or a shortfall of 0.21 e19 J/yr. Thats ~56 new 1200MW plants running 24/7, plus the new electric distribution to deliver the new 67GW required. Note that the 24/7 67GW could also be produced by each of the ~100M car owners adding ~2KW of solar to the roof.

Also see this energy flow chart which shows that by source, electric power is 38% and transportation only 27% of energy sources, suggesting some other efficiency games that might be plaid before breaking ground on new plants.
http://en.wikipedia.org/wiki/Image:USEnFlow02-quads.gif
 
Last edited:
  • #45
Ivan Seeking said:
Well, that link doesn't do me any good because I can't read it, but there is something wrong with your numbers. How do we get less than 25% of the demand by going to hybrid electric? Batteries are about 80% efficient, motors are about 90% efficient, which leads us to expect 72% efficiency over about 30% efficiency for a gasoline engine. So how do we get 10/45 from 28/70? Also, you said hybrids [not full electric] which are nowhere near 72% efficient. .

The summary on page 11 is on english and outlines the assumptions they have made so it should give you enough info about what they have done. The assumptions are all personal vehicles plug in hybrids, 70% of the distance driven is by electricity the rest is ordinary gas engine with 0.5 liter per 10 kilometer gas consumtion. I haven't read through the whole thing, but I know they are a respected source of information and its not my field so I haven't bothered looking into it more.

I thought the avarage efficiency of gas engines are around 20% though?


Ivan Seeking said:
That is fine and dandy except that you haven't considered terrorism. That is what has changed everything. Now more than ever we need to focus on the containment of nuclear materials; not a massive increase in the processing of these materials making them more available than ever before. .

Not to sound disrespectful, but this is borderline scaremongering. There are few places in the world harder to hit than a nuclear power plant. Hitting it with a big plane is all but impossible since its so small, even if they hit the old containment buildings would most probably handle it and the containment buildings for new npp's are built specificaly to be able to hande a crash. So its not a argument against new nuclear power plants.

If by materials you mean materials usable in nuclear weapons I don't se what that has to do with civilian nuclear power? Unless a shipment of mox fuel is highjacked and the terrorist has acces to a chemical plant that can separate out the reactor grade plutonium and also has the technological competence nessecary to build a bomb out of plutonium with such poor isotope composition. I don't worry much about that considering it took the greatest minds in the world and countless of billions to figure out how to make a bomb with weapons grade plutonium.


Ivan Seeking said:
Did you see the recent vidoes of security gaurds at nuclear plants caught sleeping on the job? This is post 911!.

Well what can the terrorist do if they gain entrance to the plant? They can't blow apart the containment building so no matter what they do it can't be made worse than the TMI meltdown and that wasnt a disaster in any sense of the word. People go to scared to realize it was a sucessfull demonstration of the containment.
Sleeping guards is unacceptable, but it doesn't mean a terrorist can just walk in there and cause a new Chernobyl. Thats not even physically possible.

In sweden the guards at nuclear power plants arent even armed. I still don't consider it a terrorist threat because there isn't a whole lot terrorist can do when inside.

In america maby they can steal some spent fuel rods from a fuel rod pool. But what to do with that? A dirty bomb? It would be impossible for them to transport it of the site, but even if they could the dangers of a dirty bomb is mostly from the pshycological impact on the population, not from any real health risk. http://hps.org/documents/RDD_report.pdf
To fix that problem just centralise the intermittent storage, in sweden its stored in pools 30 meter below bedrock.

The easiest place to steal material for a dirty bomb is from hospitals anyway and not highly guarded nuclear power plants. So once again what can terrorist do at a nuclear power plant? If they want to do damage it would be a lot easier to hit a chemical plant and cause a disaster(think Bhopal disaster that might have been the result of worker sabotage). They can highjack chlorine trucks and blow it up close to a arena during a big sports event, they can blow up a LNG shipment in new york harbor. There are so many other far easier targets that can cause far more damage.

Ivan Seeking said:
I rest my case: No system is perfect. The last thing that we need is a hyperescalation in the processing of nuclear materials. Sooner or later something will go wrong, and when it does your numbers are all out the window. What we need is a safe and sane source of energy - one that doesn't require infinite trust in a bureaucracy.

You haven't really made a case, you have only hinted that a terrorist attack might be dangerous without explaining how it would be dangerous. Even if something goes wrong it doesn't mean a disaster. Nuclear is a safe and sane source of energy that kill far less people than fossil fuels, no other conclusion can be drawn. We could have a new chernobyl disaster every single year and it would still not be as damaging as coal power is during regular operation.


Ivan Seeking said:
Note that this argument doesn't apply to only to nuclear technology: Just wait until the Three Gorges Dam fails. That is another example of meteor-like risk: No one dies until millions die.

But the risk is still very small compared to fossil fuels. Hydropower causes horrible accidents, just look at Banqiao that caused close to 200 000 deaths. But it is still insignificant compared to the deaths caused by fossil fuels.

Take a look at ExternE, its a life cycle estimate(probably the largest and most thourouh) of all the external damages caused by accidents, pollution etc due to different energy sources. http://www.externe.info/
 
Last edited:
  • #46
car manufacters are trying to developed efficient fuel cells,which run on hydrogen.

this combines with oxygen,and the only emission is water in the form of steam.

however,hydrogen has to be manufacterd and this usually done by buring fossil fuels.This

takes us back to square one.

thancks.
 
  • #47
Mghanem said:
car manufacters are trying to developed efficient fuel cells,which run on hydrogen.

this combines with oxygen,and the only emission is water in the form of steam.

however,hydrogen has to be manufacterd and this usually done by buring fossil fuels.This

takes us back to square one.

thancks.

Your argument is precisely meaningless. If we are to change over to hydrogen as fuel, we are going to need to at least double our power generation, that means many new power sources. We are not going to build new coal burning power plants. Natural gas will be unlikely for this as well because we can use natural gas in our cars at more efficiency anyways.

The other reason your argument is meaningless is: Hydrogen cars are on the drawing board because of the lack of fossil fuels now and in the future. The only alternative seems to be battery powered cars. Battery powered cars seam to have one advantage, efficiency, but, they are heavy, don't last, must be charged for very long times, pollute, perform badly etc.

I would argue that the future is in hydrogen because it is the cleanest fuel we have. If we can come up with good way to generate renewable electricity, then we can obtain it very cheap as well. If we start now, we can begin the shift with little problems. We probably have maybe 50 years left of consumer oil, and maybe 100 years left of consumer natural gas. By the time we cannot afford gas, we will have hydrogen. By the time gas is gone, we will have enough hydrogen.

It would also be nice to see a source of fuel which can be made by anyone as well. People with valuable land with wind, hydro, sun, geothermal, etc energy potential will be able to make and sell it. This would also lead to a competitive market, and lower prices. Right now they can highjack prices because it takes a large nations military to get a piece of the oil market.
 
  • #48
Ivan Seeking said:
so in order to provide 5 times as much power in addition to the existing supply, we would need another 500 nuclear power plants of similar size. So if we built 100 plants in 30 years during the days of naive innocence wrt nuclear power, back when it was "too cheap to meter", perhaps 200 years to build 5 times as many is reasonable given the realities of nuclear power today

I don't know about the industrial capacity, but the money was there: the Iraq war cost you about the price of 500 nuclear power plants... spend in 5 years time.
 
  • #49
vanesch said:
I don't know about the industrial capacity, but the money was there: the Iraq war cost you about the price of 500 nuclear power plants... spend in 5 years time.
At what, $5B/plant or $2.5T? Thats a rather large exaggeration. In any case as per above I believe the US could electrically power the transportation sector with existing idle capacity plus only 50 new plants.
 
  • #50
mheslep said:
At what, $5B/plant or $2.5T?

I was rather around 1 billion Euro for a 1GWe plant, and I equated $ = Euro.

Probably my price for a nuke is a bit low.
 
Back
Top