I Decomposing Vectors Using Row Reduction: A Practical Approach

dman12
Messages
11
Reaction score
0
Hello,

I am trying to figure out how to best decompose a vector into a best fit linear superposition of other, given vectors.

For instance is there a way of finding the best linear sum of:

(3,5,7,0,1)
(0,0,4,5,7)
(8,9,2,0,4)

That most closely gives you (1,2,3,4,5)

My problem contains more, higher order vectors so if there is a general statistical way of doing a decomposition like this that would be great.

Thanks!
 
Mathematics news on Phys.org
You can use least square solution. First, realize that you can express a linear combination of ##n## ##m\times 1## column vectors as a matrix product between a matrix formed by placing those ##n## columns next to each other and a ##n \times 1## column vector consisting of the coefficients of each vector in the sum. Denote the first matrix as ##A## and the second (column) one as ##x##, you are to find ##x## such that ##||Ax-b||## is minimized where ##b## is the ##m \times 1## column vector you want to fit to.
 
My hunch was that the three vectors span a 3D space in which you can express the part of (1,2,3,4,5) that lies in that space exactly (by projections). For the two other dimensions there's nothing you can do. Am I deceiving myself ?
 
Hey dman12.

This is equivalent to solving the linear system in RREF.

Understanding this process of row reduction and why it works will help you understand a lot of linear algebra in a practical capacity.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Back
Top