sgd37
- 212
- 8
Homework Statement
Using
(\sigma^{\mu \nu})^{\beta}_{\alpha} (\sigma_{\mu \nu})^{\delta}_{\gamma} = \epsilon_{\alpha \gamma} \epsilon^{\beta \delta} + \delta^{\delta}_{\alpha} \delta^{\beta}_{\gamma}
show that
\Psi_{\alpha} X_{\beta} = \frac{1}{2} \epsilon_{\alpha \beta} (\Psi X) + \frac{1}{2} (\sigma^{\mu \nu} \epsilon^{T})_{\alpha \beta} (\Psi \sigma_{\mu \nu} X)
Homework Equations
The Attempt at a Solution
if I do (\sigma^{\mu \nu})^{\beta}_{\alpha} (\sigma_{\mu \nu})^{\delta}_{\gamma} \Psi _{\beta} X_{\delta}
I can get \Psi_{\beta} X_{\alpha} = \epsilon_{\alpha \beta} (\Psi X) + (\sigma^{\mu \nu} \epsilon^{T})_{\alpha \beta} (\Psi \sigma_{\mu \nu} X)
so i don't know where the factors of a half come from and how to get the right index order
Last edited: