B Defining handedness, right-left, or clockwise-counterclockwise

  • B
  • Thread starter Thread starter fagricipni
  • Start date Start date
AI Thread Summary
The discussion explores the challenge of mathematically defining handedness and directional terms like right, left, clockwise, and counterclockwise without relying on physical references. It highlights the difficulty of defining magnetic field directions without using these terms and suggests that concepts like circular polarization or star mapping could help establish a common understanding between different cultures. The conversation also delves into the implications of handedness in higher-dimensional spaces, noting that right-handed and left-handed coordinate systems cannot be transformed into one another without rotation through additional dimensions. It concludes that while these distinctions are significant in applied mathematics, they lack a fundamental basis in pure mathematics. Overall, the thread emphasizes the complexity and relativity of directional concepts in both mathematics and physics.
fagricipni
Messages
3
Reaction score
0
I'm wondering if there is a way to mathematically define these terms without essentially physically pointing at something.

I'm not even sure it is possible to do with physics, even if one assumes the matter dominance of the universe. One is tempted to think that one could define it electromagnetically: let the direction of the travel of an electron the same as the direction you are facing, call the direction that a magnetic field points up, and the electron will drift to the left. The problem is how does one define the direction of a magnetic field without using the terms right, left, clockwise, counterclockwise, north, or south. While east can be defined as the direction of the rotation of the Earth, there is no way to define north or south without the terms right, left, clockwise, or counterclockwise.

I was inspired to think of this by Sagan's Contact, where the alien culture has to define terms for humans in the radio message. So far, I have only thought of two ways they could make sure that we are both using the same handedness: use circular polarization in the radio carrier message itself, or make a map of the nearby stars and only using the correct convention will make them match the observed pattern.

There is another reason for wanting to know if there is a mathematical definition for right-handed and left-handed coordinate systems, extending the definition to other dimensional "spaces". In 2 dimensions, the Flatlanders would also that there are two possible conventions for coordinate axes that can not be translated and rotated on to each other; one would have to rotate one through the 3rd dimension to make one coincide with the other. Likewise, we 3-dimensional creatures have two conventions for coordinate axes that can not be translated or rotated on to the other; and again, if a 4th spacial dimension existed, a right-handed coordinate system could be rotated in to a left-handed one by rotating through the 4 dimension. Hypothetical 4-dimensional creatures, would find our distinctions of 3-dimensional coordinate systems to be useless, but have two conventions for 4-dimensional coordinates to choose from.
 
Mathematics news on Phys.org
Mathematically, there is no fundamental reason to distinguish "right-hand" from "left-hand" or clockwise from counterclockwise. Two non-parallel unit vectors, ##\hat{u_1}## and ##\hat{u_2}## can define one orientation as the direction of the smallest angle from ##\hat{u_1}## and ##\hat{u_2}##. Then there is the other orientation. Neither orientation needs to be called clockwise and there is no reason to prefer one over the other. Geometric Algebra develops those ideas very systematically in higher dimensions. A great deal of physics can be represented that way. Maxwell's Equations can be represented using Geometric Algebra in one deceptively simple-looking equation.
 
Last edited:
fagricipni said:
While east can be defined as the direction of the rotation of the Earth, there is no way to define north or south without the terms right, left, clockwise, or counterclockwise.
I believe that this is correct, though (as usual) I don't see how to go about proving it. These concepts don't really exist in mathematics. One can arbitrarily say that positive is right and negative is left, but that's a convention of applied mathematics. Taking it further, up and down only have meaning relative to the surface of a planet.
 
Last edited:
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top