Definition of matrix transformation

Click For Summary

Discussion Overview

The discussion revolves around defining a transformation that maps a $2\times 2$ matrix to a $4\times 4$ matrix, exploring the nature of such transformations and their representations. Participants are examining the mathematical properties and implications of these transformations, including linearity and the structure of the transformation matrix.

Discussion Character

  • Exploratory, Technical explanation, Debate/contested

Main Points Raised

  • Carla introduces the concept of a transformation from a $2\times 2$ matrix to a $4\times 4$ matrix, suggesting a mapping of the form $sAs^T$ where $s$ is a matrix.
  • One participant suggests representing $2\times 2$ matrices as vectors of length 4 and $4\times 4$ matrices as vectors of length 16, indicating that a linear transformation can be represented by a $16\times 4$ matrix.
  • Another participant questions the linearity of the mapping $sAs^T$, stating that if $s$ is the argument, then it does not constitute a linear transformation.
  • A later reply clarifies that if $s$ is a fixed $4\times 2$ matrix with linearly independent columns, then the mapping $A \mapsto sAs^{\textsf{T}}$ does indeed transform a $2\times 2$ matrix $A$ into a $4\times 4$ matrix, while preserving certain linear properties.
  • Carla expresses interest in understanding how to determine where elements of the $2\times 2$ matrix will map in the resulting $4\times 4$ matrix, noting her current approach involves trial and error.

Areas of Agreement / Disagreement

Participants have not reached a consensus on the nature of the transformation's linearity, with some asserting it is not linear while others provide conditions under which it may be considered linear. The discussion remains unresolved regarding the best approach to define and understand the transformation.

Contextual Notes

There are limitations regarding the assumptions about the matrices involved, particularly concerning the linear independence of columns in the matrix $s$ and the implications of the transformation on the subspaces involved.

Carla1985
Messages
91
Reaction score
0
Hi all,

I have the definition of a linear transformation in terms of a transformation matrix. So the mapping is a function $f:\mathbb{R}^m\rightarrow\mathbb{R}^n$, where $f(\textbf{x})=A\textbf{x}$ and $A$ is a $n\times m$ matrix.

I'm looking for a similar definition for a transformation that takes a matrix to another matrix. I.e a $2\times 2$ matrix to a $4\times 4$ one. I think the mapping will be of the form $sAs^T$, where $s$ is a matrix but I'm sure there's more to it than that.

Also when doing a linear transformation I can say that if I want to take the first element of $\textbf{x}$ to the third element of $f(\textbf{x})$ then there will be a $1$ in the first column and third row of $A$. Ideally I would like a similar explanation for the matrix transformation.

Can someone point me in the right direction please.

Thanks
Carla
 
Physics news on Phys.org
You can represent 2x2 matrices as vectors of length 4 and 4x4 matrices as vectors of length 16. Then a linear transformation from 2x2 matrices to 4x4 matrices is represented by a 16x4 matrix.

Carla1985 said:
I think the mapping will be of the form $sAs^T$, where $s$ is a matrix but I'm sure there's more to it than that.
If $s$ is the argument, then $sAs^T$ is not a linear transformation.
 
Carla1985 said:
Hi all,

I have the definition of a linear transformation in terms of a transformation matrix. So the mapping is a function $f:\mathbb{R}^m\rightarrow\mathbb{R}^n$, where $f(\textbf{x})=A\textbf{x}$ and $A$ is a $n\times m$ matrix.

I'm looking for a similar definition for a transformation that takes a matrix to another matrix. I.e a $2\times 2$ matrix to a $4\times 4$ one. I think the mapping will be of the form $sAs^T$, where $s$ is a matrix but I'm sure there's more to it than that.
If $s$ is a fixed $4\times2$ matrix (with linearly independent columns) then the map $A\mapsto sAs^{\textsf{T}}$ takes the $2\times2$ matrix $A$ to a $4\times4$ matrix. If $A$ represents a linear transformation of $\mathbb{R}^2$ then $sAs^{\textsf{T}}$ represents the linear transformation of $\mathbb{R}^4$ which acts like $A$ on the 2-dimensional subspace spanned by the columns of $s$, and is zero on the orthogonal subspace.
 
Evgeny.Makarov said:
You can represent 2x2 matrices as vectors of length 4 and 4x4 matrices as vectors of length 16. Then a linear transformation from 2x2 matrices to 4x4 matrices is represented by a 16x4 matrix.

If $s$ is the argument, then $sAs^T$ is not a linear transformation.

I hadn't thought of this route, I will definitely explore it to so if it makes things easier. Thank you

Opalg said:
If $s$ is a fixed $4\times2$ matrix (with linearly independent columns) then the map $A\mapsto sAs^{\textsf{T}}$ takes the $2\times2$ matrix $A$ to a $4\times4$ matrix. If $A$ represents a linear transformation of $\mathbb{R}^2$ then $sAs^{\textsf{T}}$ represents the linear transformation of $\mathbb{R}^4$ which acts like $A$ on the 2-dimensional subspace spanned by the columns of $s$, and is zero on the orthogonal subspace.

This is precisely the way I have been attacking my problem thus far. The columns will be linearly independent as they consist of just zeros and ones. Do you know if there is a way of being able to tell where an element of the $2\times 2$ will end up in the $4\times 4$. I have been doing trial and error to figure it out but can't yet see the pattern.
 

Similar threads

  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 0 ·
Replies
0
Views
1K
  • · Replies 12 ·
Replies
12
Views
5K
  • · Replies 52 ·
2
Replies
52
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K