Definition of matrix transformation

Click For Summary
SUMMARY

The discussion centers on defining a matrix transformation that maps a $2\times 2$ matrix to a $4\times 4$ matrix using the transformation $sAs^{\textsf{T}}$, where $s$ is a fixed $4\times 2$ matrix with linearly independent columns. It is established that this transformation represents a linear transformation of $\mathbb{R}^4$ that behaves like the original $2\times 2$ matrix $A$ on the subspace spanned by the columns of $s$. Additionally, the representation of $2\times 2$ matrices as vectors of length 4 and $4\times 4$ matrices as vectors of length 16 is discussed, leading to the conclusion that a linear transformation from $2\times 2$ matrices to $4\times 4$ matrices can be represented by a $16\times 4$ matrix.

PREREQUISITES
  • Understanding of linear transformations and their matrix representations.
  • Familiarity with matrix multiplication and properties of matrix dimensions.
  • Knowledge of vector spaces and subspaces in linear algebra.
  • Ability to work with transformation matrices and their implications in higher dimensions.
NEXT STEPS
  • Explore the properties of linear transformations in higher dimensions using matrix representations.
  • Learn about the implications of mapping matrices to higher-dimensional spaces using transformation matrices.
  • Investigate the concept of matrix rank and its relevance to linear independence in transformations.
  • Study the relationship between matrix representations and vector spaces, particularly in the context of linear mappings.
USEFUL FOR

Mathematicians, students of linear algebra, and anyone involved in computational mathematics or machine learning who seeks to understand matrix transformations and their applications in higher-dimensional spaces.

Carla1985
Messages
91
Reaction score
0
Hi all,

I have the definition of a linear transformation in terms of a transformation matrix. So the mapping is a function $f:\mathbb{R}^m\rightarrow\mathbb{R}^n$, where $f(\textbf{x})=A\textbf{x}$ and $A$ is a $n\times m$ matrix.

I'm looking for a similar definition for a transformation that takes a matrix to another matrix. I.e a $2\times 2$ matrix to a $4\times 4$ one. I think the mapping will be of the form $sAs^T$, where $s$ is a matrix but I'm sure there's more to it than that.

Also when doing a linear transformation I can say that if I want to take the first element of $\textbf{x}$ to the third element of $f(\textbf{x})$ then there will be a $1$ in the first column and third row of $A$. Ideally I would like a similar explanation for the matrix transformation.

Can someone point me in the right direction please.

Thanks
Carla
 
Physics news on Phys.org
You can represent 2x2 matrices as vectors of length 4 and 4x4 matrices as vectors of length 16. Then a linear transformation from 2x2 matrices to 4x4 matrices is represented by a 16x4 matrix.

Carla1985 said:
I think the mapping will be of the form $sAs^T$, where $s$ is a matrix but I'm sure there's more to it than that.
If $s$ is the argument, then $sAs^T$ is not a linear transformation.
 
Carla1985 said:
Hi all,

I have the definition of a linear transformation in terms of a transformation matrix. So the mapping is a function $f:\mathbb{R}^m\rightarrow\mathbb{R}^n$, where $f(\textbf{x})=A\textbf{x}$ and $A$ is a $n\times m$ matrix.

I'm looking for a similar definition for a transformation that takes a matrix to another matrix. I.e a $2\times 2$ matrix to a $4\times 4$ one. I think the mapping will be of the form $sAs^T$, where $s$ is a matrix but I'm sure there's more to it than that.
If $s$ is a fixed $4\times2$ matrix (with linearly independent columns) then the map $A\mapsto sAs^{\textsf{T}}$ takes the $2\times2$ matrix $A$ to a $4\times4$ matrix. If $A$ represents a linear transformation of $\mathbb{R}^2$ then $sAs^{\textsf{T}}$ represents the linear transformation of $\mathbb{R}^4$ which acts like $A$ on the 2-dimensional subspace spanned by the columns of $s$, and is zero on the orthogonal subspace.
 
Evgeny.Makarov said:
You can represent 2x2 matrices as vectors of length 4 and 4x4 matrices as vectors of length 16. Then a linear transformation from 2x2 matrices to 4x4 matrices is represented by a 16x4 matrix.

If $s$ is the argument, then $sAs^T$ is not a linear transformation.

I hadn't thought of this route, I will definitely explore it to so if it makes things easier. Thank you

Opalg said:
If $s$ is a fixed $4\times2$ matrix (with linearly independent columns) then the map $A\mapsto sAs^{\textsf{T}}$ takes the $2\times2$ matrix $A$ to a $4\times4$ matrix. If $A$ represents a linear transformation of $\mathbb{R}^2$ then $sAs^{\textsf{T}}$ represents the linear transformation of $\mathbb{R}^4$ which acts like $A$ on the 2-dimensional subspace spanned by the columns of $s$, and is zero on the orthogonal subspace.

This is precisely the way I have been attacking my problem thus far. The columns will be linearly independent as they consist of just zeros and ones. Do you know if there is a way of being able to tell where an element of the $2\times 2$ will end up in the $4\times 4$. I have been doing trial and error to figure it out but can't yet see the pattern.
 

Similar threads

  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 0 ·
Replies
0
Views
950
  • · Replies 12 ·
Replies
12
Views
5K
  • · Replies 52 ·
2
Replies
52
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K