Dependance of cut-in voltage of diode on scale of VI plot

In summary, in this conversation, the speaker discusses an experiment they performed to obtain the VI characteristics of a semiconductor diode using an ANALOG DISCOVERY circuit design kit. They explain how they connected the arbitrary waveform generator to a series combination of a 1N4007 diode and a 1 kilo ohm resistor and used an oscilloscope to plot the voltage and current. The speaker also mentions their observation that the knee voltage of the diode varies with the scale chosen and questions why it is typically said to be 0.6 to 0.7V for silicon diodes. They also mention the diode equation and its relationship to forward current and voltage. Ultimately, they seek a clearer understanding of the concept of knee
  • #1
ShreyasR
88
2
I have performed a small experiment to obtain the VI characteristics of a semiconductor diode using ANALOG DISCOVERY circuit design kit.

I have connected the arbitrary waveform generator (function generator) to a series combination of a 1N4007 diode and a 1 kilo ohm resistor.

To obtain the VI characteristics, I connected the terminals of oscilloscope channel 1 across the diode (to obtain the diode voltage as a function of time) and channel 2 terminals across the resistor. The voltage across the resistor is proportional to the current in the circuit according to ohm's law. (since I have chosen a 1 kΩ resistor, the numerical value of voltage (in volts) across R is the same as current (in milliamps)...

In XY mode, I obtained a plot channel 1 (V) vs channel 2 (I).

Then I changed the current scale of the VI plot by varying volts/division for channel 2.

5Vdiv.PNG


2vdiv.PNG


1Vdiv.PNG


500mVdiv.PNG


100mVdiv.PNG


20mVdiv.PNG


It appears to me that the cut in voltage of the diode is varying with the scale chosen. for 5V/div resistor voltage (5mA/div current), the knee voltage is about 6.5 V but as i decrease the scale, the knee shifts toward the left... For 20mV/div (20μA/div) the knee voltage is less than 0.4V. My inference to this observation is that the cut in voltage depends on the current range in which the diode is being operated in the circuit. Does this mean that for a silicon diode, the knee voltage need not be 0.6 to 0.7V? Or is that defined only for a particular current range? If i am using the diode as a rectifier, I might be dealing with currents as high as 2 to 3 amps. If i plot VI characteristics for that range, i believe the knee voltage will be more than 1V...

Why is it said that the knee voltage or cut in voltage of diode is 0.6 to 0.7 V?

Any detailed explanation about knee voltage of diode please reply! Thank you!
 
Engineering news on Phys.org
  • #2
I think this is just an effect of the scaling. You can get a similar effect if you plot f(x)=e^x with different scales. Zooming in by a factor of e in vertical direction is equivalent to a shift of 1 in horizontal direction.

"Knee voltage" depends on the current range you consider, if the IV curve is exponential (or not so far away from that).
Can you set the scale to be logarithmic? ;)
 
  • Like
Likes 1 person
  • #3
I think when you say you are varying the scale you are actually varying the current also. You are concerned with the actual voltage drop vs forward current that you are seeing. The forward current does vary significantly with forward current (how significantly depends on where on the curve you are) The diode equation expresses the relationship between forward current and voltage in terms of the reverse saturation current.

http://en.wikipedia.org/wiki/Diode
 
  • #4
meBigGuy said:
I think when you say you are varying the scale you are actually varying the current also. You are concerned with the actual voltage drop vs forward current that you are seeing. The forward current does vary significantly with forward current (how significantly depends on where on the curve you are) The diode equation expresses the relationship between forward current and voltage in terms of the reverse saturation current.

http://en.wikipedia.org/wiki/Diode

No I am not actually varying the current. I used a triangular waveform with 10 V (peak to peak). the curve is obtained when the software generates the plot by capturing instantaneous voltage values across Diode and Resistor. If i am to relate this the the "manual" method of varying the supply voltage in regular steps and noting down the current values, what i am trying to say is that If I use a voltmeter and a milliammeter which can measure up to 3 or 4 decimal places, and if I tabulate V and I values for different ranges, and plot the graph for each range, (with appropriate range so as to accommodate the entire VI plot for that range) I get different knee voltages which can go as low as 0.35 V... If a choose a larger scale, the knee voltage can go upto 1 V. If this is the case, why is it said that the knee voltage is 0.2 to 0.3 volts for germanium diode and 0.6 to 0.7 for a silicon diode?

Also, when we take a look at the diode equation, We get a (very small) positive current value for any positive diode voltage. This contradicts the explanation: "The diode does not conduct until an external voltage of about 0.6 is applied so as to reduce the width of the depletion region/ provide the charge carriers with sufficient energy to cross the depletion region." I want a clear picture here to understand this properly.
 
  • #5
mfb said:
I think this is just an effect of the scaling. You can get a similar effect if you plot f(x)=e^x with different scales. Zooming in by a factor of e in vertical direction is equivalent to a shift of 1 in horizontal direction.

"Knee voltage" depends on the current range you consider, if the IV curve is exponential (or not so far away from that).
Can you set the scale to be logarithmic? ;)

Yes even I inferred that this is due to scaling effect... But this means if i am using the diode in nanoamperes range, may be the knee voltage will be about 0.2V. But that doesn't mean I am using a germanium diode does it? Isn't is important to mention the scale along with the knee voltage?

I guess there is an option to set the scale to be logarithmic. But never tried it! Well I will try it. But what should i expect when the scale is set to be logarithmic?
 
  • #6
I don't think the knee as visualized and judged on different scales is in any way meaningfull. Exponential curves will look self similar at any scale, as you can see.

There is conduction at small forward voltages as defined by the diode equation. The choice of 0.7V for silicon diodes is arbitrary but convienient. I suggest you work out values for Is and n and see if they fit.

Wikipedia says:

The third region is forward but small bias, where only a small forward current is conducted.

As the potential difference is increased above an arbitrarily defined "cut-in voltage" or "on-voltage" or "diode forward voltage drop (Vd)", the diode current becomes appreciable (the level of current considered "appreciable" and the value of cut-in voltage depends on the application), and the diode presents a very low resistance. The current–voltage curve is exponential. In a normal silicon diode at rated currents, the arbitrary cut-in voltage is defined as 0.6 to 0.7 volts. <snip> At higher currents the forward voltage drop of the diode increases. A drop of 1 V to 1.5 V is typical at full rated current

There is definitely conduction at low forward voltage, and your measurements show it. Anything said to the contrary is either wrong or being interpreted out of context.
 
  • Like
Likes 1 person
  • #7
Thank you!

meBigGuy said:
Anything said to the contrary is either wrong or being interpreted out of context.

I dint get that part... Can you please elaborate?
 
  • #8
I'm not sure about diodes, but some bipolar transistors show a knee even in a logarithmic plot. This knee is scale-invariant. This could looks similar with diodes (and the base-emitter connection of a transistor is like a diode).

Every diode will have some leakage current (in both directions), but I don't know if your devices are sensitive enough to detect it (can be in the nA range or even below I think).
 
  • #9
meBigGuy said:
There is definitely conduction at low forward voltage, and your measurements show it. Anything said to the contrary is either wrong or being interpreted out of context.

By this I was referring your your previous statement:

This contradicts the explanation: "The diode does not conduct until an external voltage of about 0.6 is applied so as to reduce the width of the depletion region/ provide the charge carriers with sufficient energy to cross the depletion region."

Feel free to ask more questions if you are not comfortable with any of what has been addressed.
 
  • #10
just a quick thought here

the current through an ideal junction is given by the old standby formula
I= I0e ^(qv/kt)

where
I0= some very small current like 10-11
v = voltage
q= charge of electron
k= Boltzmann constant( i think that's right name)
t=absolute temperature

A real diode of course has some series resistance because it's made of real material
so one would subtract from v that voltage drop

at very small currents the series resistance produces such small drop you can ignore it
but at high current it becomes significant

which is why power rectifiers have physically larger junctions than signal diodes, more area = less resistance

try some simple calculations from your observed data and see if you can figure out what is series resistance of that diode you tested
then repeat on a larger one

i'm away from home now with very limited internet access, so apologize for lack of a more thorough study of thread

good luck - old jim
 

1. What is the cut-in voltage of a diode?

The cut-in voltage of a diode is the minimum voltage required for the diode to start conducting electricity in the forward direction. It is also known as the threshold voltage or the turn-on voltage.

2. How does the cut-in voltage of a diode vary with scale on a VI plot?

The cut-in voltage of a diode is typically plotted on the x-axis of a VI (voltage vs. current) plot. As the scale of the plot is changed, the cut-in voltage will remain the same, but the slope of the curve may appear different. This is because the scale affects the apparent steepness of the curve, but not the actual cut-in voltage value.

3. Why is the cut-in voltage important in diode circuits?

The cut-in voltage is an important characteristic of a diode because it determines when the diode will start conducting and allowing current to flow in the forward direction. This is crucial in diode circuits where precise control over the flow of current is necessary.

4. How does temperature affect the cut-in voltage of a diode?

Temperature can affect the cut-in voltage of a diode, causing it to shift slightly. Generally, an increase in temperature will decrease the cut-in voltage, while a decrease in temperature will increase it. This is due to the change in the energy levels of the materials inside the diode.

5. Can the cut-in voltage of a diode be adjusted?

No, the cut-in voltage of a diode is a fixed characteristic that is dependent on the materials and construction of the diode. However, some diodes may have a lower cut-in voltage than others due to variations in manufacturing processes. In some cases, external factors such as temperature or current may also affect the cut-in voltage slightly.

Similar threads

  • Electrical Engineering
Replies
32
Views
2K
Replies
93
Views
5K
  • Electrical Engineering
Replies
3
Views
1K
Replies
23
Views
2K
Replies
3
Views
2K
  • Electrical Engineering
Replies
7
Views
2K
  • Electrical Engineering
Replies
5
Views
3K
  • Electrical Engineering
Replies
16
Views
6K
  • Electrical Engineering
Replies
7
Views
3K
  • Electrical Engineering
Replies
1
Views
824
Back
Top