Derivation of D'Alembert equation (for pressure waves)

AI Thread Summary
The discussion focuses on the derivation of the D'Alembert equation for pressure waves, highlighting the relationship between pressure differences and wave propagation. It begins with the premise that pressure on one side is greater than the other, leading to a smaller volume on the right. The user expresses confusion about the relationship between the variables in the equation, specifically regarding the application of the Chain Rule. Clarification is provided that the Chain Rule relates the variables and their derivatives, leading to the classical wave equation. The conversation emphasizes the significance of these equations in understanding wave behavior in fluids.
fcoulomb
Messages
8
Reaction score
0
In my textbook there is an explanation of a derivation of D'Alembert equation for pressure waves. (##\frac{\partial^2 y}{\partial x^2}=\frac{\rho}{\beta}\frac{\partial^2 y}{\partial t^2}##)
I put the picture (the only one I found on internet) but I'll call ##y_1 ,y_2## as ##\psi_1,\psi_2## and the second volume will be smaller that the first volume (unlike in the picture) so ##V_2<V_1##.

Starting by the fact that there is a pression on the left bigger than pressure on the right (so the volume will be smaller) ##P_1 >P_2##, I have ##(P_1-P_2)A=ma_x= \rho_0 A dx \frac{\partial^2 y}{\partial t^2}##.

Then I write ##P_{1,2}## as ##P_0+dP_{1,2}##, so ##dP_1-dP_2= -\frac{\partial(dP)}{\partial x} dx##.

Then I use the fact that ##dP=\beta \frac{d\rho}{\rho_0}## (with ##\beta## the coefficient of compressibility), but I need to write the ##d\rho## as a function of x, so

##\rho_0 V_1=(\rho_0+d\rho)V_2 \rightarrow \rho_0 A dx= (\rho_0+d\rho) A (dx-d\psi)##

Then by book says that I can write ##d\psi=\frac{\partial \psi}{\partial x}dx##, but I don't understand how these two variables are related.
Any help?
 

Attachments

  • SoundWaveEqn.gif
    SoundWaveEqn.gif
    2.3 KB · Views: 505
Physics news on Phys.org
fcoulomb said:
...book says that I can write ##d\psi=\frac{\partial \psi}{\partial x}dx##, but I don't understand how these two variables are related.
Any help?
It's just the Chain Rule from calculus. It expresses whatever relationship there is between the variables (or their derivatives, anyway).
 
That is the classical wave equation. The solutions of that are waves which vary in time and propagate in space.

Are you asking how to derive the solution to that differential equation? If so, you can find it here:
https://en.wikipedia.org/wiki/Wave_equation#General_solution

edit: wrong link replaced.
 
anorlunda said:
That is the classical wave equation. The solutions of that are waves which vary in time and propagate in spac.

That's why the title of the thread says "D'Alembert equation (for pressure waves)." :wink:
 
Hi there, im studying nanoscience at the university in Basel. Today I looked at the topic of intertial and non-inertial reference frames and the existence of fictitious forces. I understand that you call forces real in physics if they appear in interplay. Meaning that a force is real when there is the "actio" partner to the "reactio" partner. If this condition is not satisfied the force is not real. I also understand that if you specifically look at non-inertial reference frames you can...
I have recently been really interested in the derivation of Hamiltons Principle. On my research I found that with the term ##m \cdot \frac{d}{dt} (\frac{dr}{dt} \cdot \delta r) = 0## (1) one may derivate ##\delta \int (T - V) dt = 0## (2). The derivation itself I understood quiet good, but what I don't understand is where the equation (1) came from, because in my research it was just given and not derived from anywhere. Does anybody know where (1) comes from or why from it the...
Back
Top