f(x) \ = \ \frac{1}{x} \ = \ \frac{1}{x^1} \ = \ x^{(-1)}
f'(x) \ = \ (-1)x^{(-1) - 1} \ = \ (-1)x^{(-2)} \ = \ \frac{(-1)}{x^{2}} \ =\ - \ \frac{1}{x^2}
Proof?
f(x) \ = \ \frac{1}{x}
f(x \ + \ h) \ = \ \frac{1}{x + h}
f(x \ + \ h) \ - \ f(x) \ = \ \frac{1}{x + h} \ - \ \frac{1}{x}
f(x \ + \ h) \ - \ f(x) \ = \ \frac{1}{x + h} \ - \ \frac{1}{x} \ \Rightarrow \ \frac{x \ - \ x \ - \ h }{x(x + h)}
\lim_{h \to 0} \ \frac{f(x \ + \ h) \ - \ f(x)}{h} \ = \ ?
Can you finish it off person who originally asked this question over 2 years ago?