Derivative of (2+3sinx)(4+5cosx)tanx

  • Thread starter Thread starter Sakha
  • Start date Start date
  • Tags Tags
    Derivative
Sakha
Messages
297
Reaction score
0

Homework Statement



Derive the following:
f(x)= (2+3sinx)(4+5cosx)tanx



2. The attempt at a solution
I derive it and got
f'(x)=(4+5)tanx(3cosx)+(2+3sinx)(tanx(-5sinx)+sec2x(4+5cosx))

Can someone confirm if this is right?
 
Physics news on Phys.org
Correct, good work
 
Thanks!
I put it first on WolframAlpha to compare, but it does the product rule the other way I did so I didnt felt like simplifying.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Replies
15
Views
3K
Replies
2
Views
3K
Replies
3
Views
6K
Replies
3
Views
1K
Replies
8
Views
2K
Replies
6
Views
2K
Replies
4
Views
15K
Back
Top