JohanL
- 154
- 0
the derivative of a tensor
<br /> a_{ij}x^ix^j<br />
with respect to x^k, k=2 and i,j = 1,2,3.
solution:
<br /> \frac {d} {dx^k}a_{ij}x^ix^j =<br /> a_{ij}\frac {dx^i} {dx^k}x^j + a_{ij}x^i \frac {dx^j} {dx^k} =<br /> a_{2j}x^j + a_{i2}x^i =<br /> a_{21}x^1 + a_{22}x^2 + a_{23}x^3 + a_{12}x^1 + a_{22}x^2 + a_{32}x^3<br /> <br />
is that correct?
<br /> a_{ij}x^ix^j<br />
with respect to x^k, k=2 and i,j = 1,2,3.
solution:
<br /> \frac {d} {dx^k}a_{ij}x^ix^j =<br /> a_{ij}\frac {dx^i} {dx^k}x^j + a_{ij}x^i \frac {dx^j} {dx^k} =<br /> a_{2j}x^j + a_{i2}x^i =<br /> a_{21}x^1 + a_{22}x^2 + a_{23}x^3 + a_{12}x^1 + a_{22}x^2 + a_{32}x^3<br /> <br />
is that correct?