I Derivative of the Ad map on a Lie group

eipiplusone
Messages
9
Reaction score
0
Hi,

let ##G## be a Lie group, ##\varrho## its Lie algebra, and consider the adjoint operatores, ##Ad : G \times \varrho \to \varrho##, ##ad: \varrho \times \varrho \to \varrho##.

In a paper (https://aip.scitation.org/doi/full/10.1063/1.4893357) the following formula is used. Let ##g(t)## be a smooth curve on ##G##, with ##\frac{d}{dt}|_{t=0} g(t) = v##. And let ##u## be some arbitrary element in ##\varrho##. Then,

$$\frac{d}{dt}|_{t=0} Ad_{g(t)} u = ad_{\frac{d}{dt}|_{t=0} g(t)} u = ad_{v} u .$$

I know that this identity holds for Matrix groups, but the present setup is a general Lie group.

Furthermore, in the book "Dynamical systems and geometric mechanics", the above property is actually used as a definition of the ##ad##-map, for any ##v \in \varrho## and any curve ##g## with ##g'(0) = v##.

Any hints as to why the formula is true would be greatly appreciated.
 
Physics news on Phys.org
(hopefully, the equations display now).

I don't see anything about the Ad-map in Pantheon-link - am I missing something?

Regarding Ado's theorem. As I understand it, it can be used to show that any finite dimensional Lie group is locally isomorphic to a Linear group (a matrix group). I guess that might allow us to "transfer" the formula from the Linear group (on which it holds) to the abitrary Lie group. I will think about that. If you have any hints as to how the argument would go, I would love to hear them.
 
eipiplusone said:
I don't see anything about the Ad-map in Pantheon-link - am I missing something?
##\mathcal{L}_X(Y) = \operatorname{ad}X (Y) = [X,Y]##.

The most important formula is ##\operatorname{Ad} exp (\rho) = exp (\mathfrak{ad}\rho)##.

##\operatorname{Ad}## is induced by the conjugation in the group, leading to a conjugation with group elements on its tangent space, which if differentiated results in the left multiplication ##\mathfrak{ad}## in the Lie algebra.

You don't need Ado, I just mentioned it to emphasize that "not a general linear group" is relative. Of course there are local Lie groups as well, which do not naturally allow a matrix representation. Here's a nice example:
https://www.physicsforums.com/insights/journey-manifold-su2mathbbc-part/which can also serve as an easy to calculate example of the curves ##g(t)## you mentioned.

If you really want to dive in the subject, then I recommend Varadarajan's book on Lie groups. But for a quick look, the explanation of Lie derivatives and the examples there will do.
 
Last edited:

Similar threads

Replies
29
Views
3K
Replies
10
Views
2K
Replies
3
Views
2K
Replies
3
Views
6K
Replies
1
Views
2K
Back
Top