Derivative Problem: Deriving the n-th Derivative of f(x)

  • Thread starter Thread starter temaire
  • Start date Start date
  • Tags Tags
    Derivative
temaire
Messages
275
Reaction score
0

Homework Statement


Let f(x)=\frac{1}{5x-1}, x\neq 1/5. Derive a formula for the n-th derivative f^{n}(x).


2The attempt at a solution
I have part of the answer right, but I can't figure out the rest. So far, this is what I have:
f^{n}(x)=\frac{-5^{n}}{(5x-1)^{n-1}}

I'm pretty sure I have the denominator right. I just need help finishing up the numerator.
 
Physics news on Phys.org
Try writing your function as f(x) = (5x - 1)^(-1). That will make differentiating easier.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top