Derivative with a range constraint - mystified

Gekko
Messages
69
Reaction score
0

Homework Statement



x=sin(a) / cos(b)

a+b < pi/2
a>0, b>0
0<x<1

show that

da/dx = cos^3(b)cos(a) / cos(a+b)cos(a-b)


The Attempt at a Solution



dx/da = cos(a) / cos(b) therefore
da/dx = cos(b) / cos(a)

=cos^3(b)cos(a) / cos^2(b)cos^2(a)

However the denominator of the desired format = cos(a+b)cos(a-b) = cos^2(a)cos^2(b)-sin^2(a)sin^2(b)

Not sure how to get rid of the sin^2(a)sin^2(b) term.

Is the question wrong or is there something special that needs to be done to take into account the range of a, b and x?

Very much appreciate help as I've been totally stumped on this and the equality is required further on
 
Physics news on Phys.org
If you add and subtract cos2(a)sin2(b) in the denominator your equality comes out:

\frac{\cos(b)}{\cos(a)}=\frac{\cos^3(b)\cos(a)}{\cos^2(a)-\sin^2(b)}

At least I think it does; you can check it. The problem is if you let a = b = π/6, you get the left side = 0.9742785794, the right side = 1, and x = 0.5773502695.

So it would appear something is amiss. :frown:
 
This seems to be the same question you posted in this thread.
This equation is not an identity
\frac{cos(b)}{cos(a)}=\frac{cos^3(b)cos(a)}{cos^2(a)-sin^2(b)}
LCKurtz points out a counterexample. Another is a = π/6 and b = π/4. Using these numbers the left side value is sqrt(6)/3 and the right side value is sqrt(6)/2.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top