How Do You Calculate the Rate of Change of Wave Frequency with Water Depth?

AI Thread Summary
The discussion centers on calculating the rate of change of wave frequency with respect to water depth using the formula f = [(g/(2PiL))tanh(2Pih/L)]^1/2. Participants are working through the derivative df/dh, with one user expressing uncertainty about their calculations and the integration of hyperbolic functions. They highlight the importance of keeping constants correct and clarify relationships between hyperbolic functions. The conversation suggests that further assistance might be found in dedicated math or homework forums. Overall, the thread emphasizes the complexity of the derivative involving hyperbolic functions in wave frequency calculations.
cunhasb
Messages
12
Reaction score
0
Could anyone give a hand in solving this problem?

In shallow ocean water, the frequency of the wave action (number of wave crests passing a given point per second) is given by f= [(g/(2PiL))tanh(2Pih/L)]^1/2, where g is the acceleration due to gravity, L is the distance between wave crests, and h is the depth of the water. Get an equation for the rate of change of f with respect to h assuming g and L are constants.

Well this is what I've gotten so far...I'm not sure if it is right or not...

df/dh=1/2((g/2PiL) tanh(2Pih/L))^-1/2 * ((g/L^2)sech^2(2Pih/L))
=((g/L^2)sech^2(2Pih/L))/2√((g/2PiL)tanh(2Pih/L))

well seems that the final answer is

(gPi/2L^3)^1/2 csch^1/2(2Pih/L)sech^3/2(2Pih/L)

So, I have no idea how this answer was derived, looking at it seems that they integrated it (sech^3/2)... is that so?

It would be of great help you anyone could give a hand on this one...


Thank you so much... guys...
 
Engineering news on Phys.org
I am very rusty on my derivatives. But I will say that it doesn't make any sense to integrate something while looking for the derivative of a function. It appears to be a nasty little hyperbolic function...You may want to repost this in the homework or math sections for a bit more help.
 
cunhasb - you seem to be on the right track. Make sure constants are correct, and remember

tanh x = sinh x/ cosh x = sech x/csch x, csch x = 1/sinh x, sech x = 1/cosh x

--------------------------------------

let f = (\frac{g}{2\pi L} tanh (\frac{2\pi h}{L})^{1/2}

or f = (a g)^{1/2}, so

df/dh = f ' = 1/2 a1/2 g-1/2 g '

now if g = tanh (bh) , then g ' = b sech2 (bh) where b = \frac{2\pi}{L}

so

f ' = 1/2 (\frac{g}{2\pi L})^{1/2} (tanh (\frac{2\pi}{L}))^{-1/2}\,sech^2 (\frac{2\pi h}{L})\,\,\frac{2\pi}{L}
 
thank you guys... Sorry not to thank you before... but I was away for a few days...

Thank you so much...
 
Hi all, i have some questions about the tesla turbine: is a tesla turbine more efficient than a steam engine or a stirling engine ? about the discs of the tesla turbine warping because of the high speed rotations; does running the engine on a lower speed solve that or will the discs warp anyway after time ? what is the difference in efficiency between the tesla turbine running at high speed and running it at a lower speed ( as fast as possible but low enough to not warp de discs) and: i...
Thread 'Where is my curb stop?'
My water meter is submerged under water for about 95% of the year. Today I took a photograph of the inside of my water meter box because today is one of the rare days that my water meter is not submerged in water. Here is the photograph that I took of my water meter with the cover on: Here is a photograph I took of my water meter with the cover off: I edited the photograph to draw a red circle around a knob on my water meter. Is that knob that I drew a red circle around my meter...
Back
Top