orentago
- 27
- 0
[/tex]1. Homework Statement [/b]
Given: \phi(x)=\phi^+(x)+\phi^-(x)
Where:
\phi^+(x)=\sum_{\mathbf{k}} \sqrt{\frac{\hbar c^2}{2 V \omega_{\mathbf{k}}}} a(\mathbf{k}) \mathrm{e}^{-\mathrm{i}kx}
and
\phi^-(x)=\sum_{\mathbf{k}} \sqrt{\frac{\hbar c^2}{2 V \omega_{\mathbf{k}}}} a^\dagger (\mathbf{k}) \mathrm{e}^{\mathrm{i}kx}
Show that:
a(\mathbf{k})=\frac{1}{\sqrt{2 \hbar c^2 V \omega_{\mathbf{k}}}} \int\mathrm{d}^3 \mathbf{x} \mathrm{e}^{\mathrm{i}kx} (\mathrm{i}\dot{\phi}(x)+\omega_{\mathbf{k}} \phi(x))
See above
First differentiate \phi(x) w.r.t. time:
\dot{\phi}(x) = -\mathrm{i} \omega_{\mathbf{k}} \phi^+(x) + \mathrm{i} \omega_{\mathbf{k}} \phi^-(x) = -\mathrm{i} \omega_{\mathbf{k}} (\phi^+(x)-\phi^-(x))
Then add \mathrm{i}\dot{\phi}(x) to \omega_\mathbf{k}\phi(x) to give:
\omega_{\mathbf{k}} \phi(x)+\mathrm{i} \dot{\phi}(x) = 2 \omega_{\mathbf{k}} \sum_{\mathbf{k}} \sqrt{ \frac{\hbar c^2}{2 V \omega_{\mathbf{k}}}} a(\mathbf{k}) \mathrm{e}^{-\mathrm{i}kx} = \sum_{\mathbf{k}} \sqrt{\frac{2 \omega_{\mathbf{k}} \hbar c^2}{V}} a(\mathbf{k}) \mathrm{e}^{-\mathrm{i}kx}
So:
\omega_{\mathbf{k}} \phi(x)+\mathrm{i} \dot{\phi}(x) = \sum_{\mathbf{k}} \sqrt{\frac{2 \omega_{\mathbf{k}} \hbar c^2}{V}} a(\mathbf{k}) \mathrm{e}^{-\mathrm{i}kx}
And then I get stuck, because I have no idea how to get rid of the summation sign. I'm not certain of what happens to the V either, though I suspect it has something to do with the integral in some way.
Does anyone have any hints?
Given: \phi(x)=\phi^+(x)+\phi^-(x)
Where:
\phi^+(x)=\sum_{\mathbf{k}} \sqrt{\frac{\hbar c^2}{2 V \omega_{\mathbf{k}}}} a(\mathbf{k}) \mathrm{e}^{-\mathrm{i}kx}
and
\phi^-(x)=\sum_{\mathbf{k}} \sqrt{\frac{\hbar c^2}{2 V \omega_{\mathbf{k}}}} a^\dagger (\mathbf{k}) \mathrm{e}^{\mathrm{i}kx}
Show that:
a(\mathbf{k})=\frac{1}{\sqrt{2 \hbar c^2 V \omega_{\mathbf{k}}}} \int\mathrm{d}^3 \mathbf{x} \mathrm{e}^{\mathrm{i}kx} (\mathrm{i}\dot{\phi}(x)+\omega_{\mathbf{k}} \phi(x))
Homework Equations
See above
The Attempt at a Solution
First differentiate \phi(x) w.r.t. time:
\dot{\phi}(x) = -\mathrm{i} \omega_{\mathbf{k}} \phi^+(x) + \mathrm{i} \omega_{\mathbf{k}} \phi^-(x) = -\mathrm{i} \omega_{\mathbf{k}} (\phi^+(x)-\phi^-(x))
Then add \mathrm{i}\dot{\phi}(x) to \omega_\mathbf{k}\phi(x) to give:
\omega_{\mathbf{k}} \phi(x)+\mathrm{i} \dot{\phi}(x) = 2 \omega_{\mathbf{k}} \sum_{\mathbf{k}} \sqrt{ \frac{\hbar c^2}{2 V \omega_{\mathbf{k}}}} a(\mathbf{k}) \mathrm{e}^{-\mathrm{i}kx} = \sum_{\mathbf{k}} \sqrt{\frac{2 \omega_{\mathbf{k}} \hbar c^2}{V}} a(\mathbf{k}) \mathrm{e}^{-\mathrm{i}kx}
So:
\omega_{\mathbf{k}} \phi(x)+\mathrm{i} \dot{\phi}(x) = \sum_{\mathbf{k}} \sqrt{\frac{2 \omega_{\mathbf{k}} \hbar c^2}{V}} a(\mathbf{k}) \mathrm{e}^{-\mathrm{i}kx}
And then I get stuck, because I have no idea how to get rid of the summation sign. I'm not certain of what happens to the V either, though I suspect it has something to do with the integral in some way.
Does anyone have any hints?
Last edited: