Derive the formula for the frequency of a spring

AI Thread Summary
The discussion revolves around deriving the frequency of vibration for two masses connected by a spring. The formula to be derived is ω = √[ k(m1 + m2) / (m1*m2) ], with the center of mass remaining at rest as a key consideration. Participants suggest using relative accelerations and Newton's laws to establish the relationship between the masses and their displacements. Defining displacements correctly is essential for forming the necessary differential equations. Ultimately, the goal is to manipulate these equations to arrive at the desired frequency formula.
astroman707
Messages
61
Reaction score
5

Homework Statement


Two masses m1 and m2 are joined by a spring of spring constant k. Show that the frequency of vibration of these masses along the line connecting them is
ω = √[ k(m1 + m2) / (m1*m2) ]
(Hint: Center of mass remains at rest.)

Homework Equations


f = w/2π
w = √(k/m)
F = -kx
a = - w2x

The Attempt at a Solution


I tried finding the center of mass and using that as m, in ma = kx
I also tried manipulating the formula for acceleration, and plugging it into hooke's law, but that didn"t seem right either. I'm pretty lost to be honest.
 
Physics news on Phys.org
I take it that you know that for a fixed spring on one end and a mass m on the other that the frequency of oscillation is ##\omega = \sqrt{\frac{k}{m}}##

If you try to work it out as if one of the masses was fixed and another notional mass vibrating relative to it such that the acceleration of that mass is equal to the relative acceleration between the two masses m1 and m2, you can solve the problem. Call the notional single mass that is vibrating ##\mu##. If you set ##\mu a_{rel} = -kx## where ##a_{rel} = a_2 - a_1##, you can see that ##\omega = \sqrt{\frac{k}{\mu}}##. You just have to determine what ##\mu## is. (hint: by Newton's third law ##m_1a_1 = - m_2a_2##)

AM
 
Last edited:
Hello @astroman707,

'Just curious, is this problem from coursework that requires calculus or differential equations?

Anyway, there's another way to approach this problem if you don't wish to use relative accelerations.

The first order of business is to define your displacements and then relate them to the stretch of the spring. For example, if you choose to define that x_1 is positive when m_1 moves to the left and x_2 is positive when m_2 moves to the right, then x = x_1 + x_2. On the other hand, if you want to define positive in the same x-direction for both, then there will be a negative sign in your equation somewhere (e.g., x = x_2 - x_1). Anyway, the choice is yours, but you'll need to define your terms before we move on.

With that, you should have enough to form two differential equations, one for each mass, by using Newton's second law. But don't worry, you'll only need to use one of them.

The trick then is to use the hint that @Andrew Mason made in the previous post. You're interim goal is to find a relationship of the ratio \frac{x_1}{x_2} in terms of m_1 and m_2. Andrew's hint about Newton's third law will get you there.

After that, do a little substitution and you'll have all you need to solve either of the second order, ordinary differential equations and you'll have your \omega.
 
  • Like
Likes Andrew Mason
If you use Collinsmark's approach you have to keep in mind that ##x_1## and ##x_2## are the respective displacements of ##m_1## and ##m_2## from the centre of mass of the two-body system.

AM
 
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Back
Top