How Do You Derive the Velocity Equation for the Pitt Fall Ride at Kennywood?

AI Thread Summary
The discussion focuses on deriving the velocity equation for the Pitt Fall ride at Kennywood, which involves understanding the forces acting on the ride, including gravity and drag. Participants clarify that the drag force should be combined with gravitational force to accurately represent the net force, leading to the equation F = mg - bv. The terminal velocity is established at 65 mph, and the value of b is calculated as 1962.6. The integration process for deriving the velocity as a function of time is initiated, emphasizing the need for correct units and understanding of the forces involved. Overall, the conversation highlights the importance of incorporating all relevant forces to derive the correct equations for the ride's motion.
member 217843

Homework Statement


The Pitt Fall is thrill ride at Kennywood that lifts passengers to a certain height, pauses for a few moments, and then drops the riders, causing them to free fall towards the ground before gradually applying breaks 79 ft above the ground. Assume there is a drag force, F=-bv, and the terminal velocity reached is 65 mph (29.1m/s). There are 16 passengers, each weighing 178 lbs, and the ride weighs 10,000 lbs. Determine the value of b. Derive the velocity equation as a function of time.

Homework Equations


I understand that you must use calculus, but I do not know how to derive the equation.

The Attempt at a Solution


I found that b=1962.6, and I started to derive the equation, but I am not certain where to go from here:
F=-bv
ma=-bv
m(dv/dt)=-bv
dv/v=-b(dt)/m
\int dv/v=-b/m\int dt
 
Physics news on Phys.org
First you got value of b wrong i guess. And net force on the ride its not just -bv, there is gravity too, otherwise this whole ride would have no meaning ;] Net force is F = mg - bv (if you choose your positive axis downward)
Terminal velocity means that F=ma=0 (a = 0) so velocity does not change: mg - bv =0 -> b = mg/v (use right units too - if g is in m/s^2, then v in m/s)
As for finding v in terms of time, just write:
F = ma = m(dv/dt) = mg - bv
 
Last edited:
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
Back
Top