Deriving the Gaussian density probability equation

CuriousQuazim
Messages
4
Reaction score
0
Hey ^^, new here but I already have a question haha

Does anyone here know how the coefficient (x-μ)^2 was derived in the following equation:

σ^3=(1/√2∏)∫(1/σ)*(x-μ)^2*exp((x-μ)^2)/(2σ^2))

I know the general equation for density probability is (1/σ)*exp((x-μ)^2)/(2σ^2))
but in this case I can't quite see how the coefficient came about... any help?

Thanks in advance!
 
Physics news on Phys.org
Your expression looks wrong to me. Could you check it for accuracy?
 
It looks like it should be σ2. The expression is essentially the definition of the variance, the second moment of the distribution centered at the mean.
 
Oh I'm sorry that was an error on my part, it is indeed σ^2

σ^2=(1/√2∏)∫(1/σ)*(x-μ)^2*exp((x-μ)^2)/(2σ^2))

Ah thank you so much mathman ^^, that's what I was looking for! I'm studying engineering so sometimes they just throw mathematical equations at us with no explanation ¬_¬.
 
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Back
Top