Destructive interference in a speaker value

AI Thread Summary
The discussion revolves around calculating the position for complete destructive interference of sound waves emitted from two speakers. The speakers are located at (0, 0) and (0, 4.00) meters, emitting waves of wavelength 1.55 m. The path difference formula is used to find the smallest positive x on the x-axis where interference occurs, initially leading to incorrect calculations. A critical realization is that using a path difference of 2.5 (n=2) yields the correct smallest value of x, which is 0.127 meters. The error stemmed from misinterpreting the path difference requirement for destructive interference.
jwbehm
Messages
12
Reaction score
0

Homework Statement



Speaker 1 is positioned at the origin and speaker 2 is at the position (0, 4.00) meters. They emit identical sound waves of wavelength 1.55 m, in phase. If you stand on the x-axis at (x, 0) meters, what is the smallest positive value for x for which you experience complete destructive interference?

Homework Equations



A^2+ B^2 = C^2
P2-P1= (n+.5)λ
V= λf

The Attempt at a Solution



My main question, though its possibly not where I am going wrong, is would n have to equal 0 for it to be lowest destructive interference?
 
Physics news on Phys.org
Excuse my poor handwriting. . .
scan0002-1.jpg


After plugging in all variables I came up with 9.94, which is incorrect. Is N supposed to equal 0 for this problem?

p1 is from the bottom speaker to the listener and p2 is the hypotenuse
 
The work you did seems to be on the right track, but perhaps use of different notation will clear things up. Since one speaker is located at the origin (0, 0) and the other speaker is located at (0, 4), we do not need the co-ordinates of the Point P1-P2 but rather its distance:

Since the Path Difference/ Wavelength = 0.5 (you had written n+0.5 but since we are looking for the smallest value, 0.5 will work), we can express the path difference as:
x units from the speaker at the origin
Sqrt(x^2 + 4^2) units from the speaker at (0, 4)

Thus: Path difference = Sqrt(x^2 + 4^2) - x
Wavelength = 1.55

The rest is for you to solve.
 
Hmm that gives me the answer I had already come up with which was incorrect, 9.935. Let me make sure I'm following you right

Path difference = Sqrt(x^2 + 4^2) - x

Here I'm plugging in wavelength/2, thus

.775 = Sqrt(x^2 + 4^2) - x
which brings me to
(x+.775)^2= x^2+ 4^2
which eventually goes to
1.55x-15.4=0
Thus x= 9.935. . . which is incorrect.
 
Ahh. I see my mistake. My mistake was assuming that the Path Difference/ Wavelength = 0.5. A value of 0.5 for the P.D./wavelength is not the smallest path difference. From a bit of trial and error, you will see that 2.5 (i.e. n=2, n+0.5 = 2,5) creates the smallest path difference with an answer of x=0.127.

I am sorry I have made such a basic error.
 
Thread 'Struggling to make relation between elastic force and height'
Hello guys this is what I tried so far. I used the UTS to calculate the force it needs when the rope tears. My idea was to make a relationship/ function that would give me the force depending on height. Yeah i couldnt find a way to solve it. I also thought about how I could use hooks law (how it was given to me in my script) with the thought of instead of having two part of a rope id have one singular rope from the middle to the top where I could find the difference in height. But the...
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Back
Top