Determining <r> for the hydrogen atom

AI Thread Summary
The discussion focuses on calculating the expectation value <r> for the hydrogen atom's wavefunction with quantum numbers n=3, l=2, and m=0. The normalized wavefunction is provided, and the method to find <r> involves integrating the probability distribution P(r). Two approaches are suggested: determining the normalization constant C by ensuring the integral of P(r) equals 1, or calculating <r> directly since the normalization constant cancels out in the process. Ultimately, the calculated expectation value <r> is found to be 21/2 a0, confirming the accuracy of the solution. This highlights the importance of understanding wavefunction normalization in quantum mechanics.
Potatochip911
Messages
317
Reaction score
3

Homework Statement


The equation for the normalized ##n=3##, ##l=2##, ##m=0## wavefunction is given by $$\psi_{320}=\frac{1}{81\sqrt{6\pi}}\left(\frac{1}{a_0}\right)^{3/2}\left(\frac{1}{a_0^2}\right)r^2e^{-\frac{r}{3a_0}}(3cos^2\theta-1)e^{i\phi}$$
Determine the expectation value ##<r>##.

Homework Equations


3. The Attempt at a Solution [/B]
##<r>## can be found using the equation ##<r>=\int_0^{\infty} rP(r)dr## where ##P(r)=r^2R(r)R^*(r)##, now I know that ##R(r)## will contain the parts of ##\psi## that are functions of ##r## but I'm not sure as to how I can find the normalization constant for it. In other words I have ##R(r)=Cr^2e^{-\frac{r}{3a_0}}## where C is the constant I must somehow determine. I'm not quite sure where to go from here and I can't seem to find a textbook where they go over calculating these (checked Griffiths and a few others).
 
Physics news on Phys.org
There are two ways to go about doing that.
1) if you want to determine the normalization constant, you have the fact that the integral of the distribution over all possible values must 1, i.e.
$$ \int_0^\infty P(r) dr = 1 $$
Use this integral to solve for C.

2) Again, using the fact that the integral of the distribution is one, you can calculate
$$ <r> = \int_0^\infty rP(r)dr = \frac{\int_0^\infty rP(r)dr }{\int_0^\infty P(r)dr} $$
and the normalization constant will cancel out completely.
 
  • Like
Likes Potatochip911
Brian T said:
There are two ways to go about doing that.
1) if you want to determine the normalization constant, you have the fact that the integral of the distribution over all possible values must 1, i.e.
$$ \int_0^\infty P(r) dr = 1 $$
Use this integral to solve for C.

2) Again, using the fact that the integral of the distribution is one, you can calculate
$$ <r> = \int_0^\infty rP(r)dr = \frac{\int_0^\infty rP(r)dr }{\int_0^\infty P(r)dr} $$
and the normalization constant will cancel out completely.
Thanks I managed to get ##<r>=\frac{21}{2}a_0## which matched the answer I saw on a website.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Back
Top