Determining <r> for the hydrogen atom

AI Thread Summary
The discussion focuses on calculating the expectation value <r> for the hydrogen atom's wavefunction with quantum numbers n=3, l=2, and m=0. The normalized wavefunction is provided, and the method to find <r> involves integrating the probability distribution P(r). Two approaches are suggested: determining the normalization constant C by ensuring the integral of P(r) equals 1, or calculating <r> directly since the normalization constant cancels out in the process. Ultimately, the calculated expectation value <r> is found to be 21/2 a0, confirming the accuracy of the solution. This highlights the importance of understanding wavefunction normalization in quantum mechanics.
Potatochip911
Messages
317
Reaction score
3

Homework Statement


The equation for the normalized ##n=3##, ##l=2##, ##m=0## wavefunction is given by $$\psi_{320}=\frac{1}{81\sqrt{6\pi}}\left(\frac{1}{a_0}\right)^{3/2}\left(\frac{1}{a_0^2}\right)r^2e^{-\frac{r}{3a_0}}(3cos^2\theta-1)e^{i\phi}$$
Determine the expectation value ##<r>##.

Homework Equations


3. The Attempt at a Solution [/B]
##<r>## can be found using the equation ##<r>=\int_0^{\infty} rP(r)dr## where ##P(r)=r^2R(r)R^*(r)##, now I know that ##R(r)## will contain the parts of ##\psi## that are functions of ##r## but I'm not sure as to how I can find the normalization constant for it. In other words I have ##R(r)=Cr^2e^{-\frac{r}{3a_0}}## where C is the constant I must somehow determine. I'm not quite sure where to go from here and I can't seem to find a textbook where they go over calculating these (checked Griffiths and a few others).
 
Physics news on Phys.org
There are two ways to go about doing that.
1) if you want to determine the normalization constant, you have the fact that the integral of the distribution over all possible values must 1, i.e.
$$ \int_0^\infty P(r) dr = 1 $$
Use this integral to solve for C.

2) Again, using the fact that the integral of the distribution is one, you can calculate
$$ <r> = \int_0^\infty rP(r)dr = \frac{\int_0^\infty rP(r)dr }{\int_0^\infty P(r)dr} $$
and the normalization constant will cancel out completely.
 
  • Like
Likes Potatochip911
Brian T said:
There are two ways to go about doing that.
1) if you want to determine the normalization constant, you have the fact that the integral of the distribution over all possible values must 1, i.e.
$$ \int_0^\infty P(r) dr = 1 $$
Use this integral to solve for C.

2) Again, using the fact that the integral of the distribution is one, you can calculate
$$ <r> = \int_0^\infty rP(r)dr = \frac{\int_0^\infty rP(r)dr }{\int_0^\infty P(r)dr} $$
and the normalization constant will cancel out completely.
Thanks I managed to get ##<r>=\frac{21}{2}a_0## which matched the answer I saw on a website.
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'Calculation of Tensile Forces in Piston-Type Water-Lifting Devices at Elevated Locations'
Figure 1 Overall Structure Diagram Figure 2: Top view of the piston when it is cylindrical A circular opening is created at a height of 5 meters above the water surface. Inside this opening is a sleeve-type piston with a cross-sectional area of 1 square meter. The piston is pulled to the right at a constant speed. The pulling force is(Figure 2): F = ρshg = 1000 × 1 × 5 × 10 = 50,000 N. Figure 3: Modifying the structure to incorporate a fixed internal piston When I modify the piston...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top