How Do Wind and Plane Angles Affect Flight Direction and Speed?

  • Thread starter Thread starter ilene
  • Start date Start date
  • Tags Tags
    Angle
AI Thread Summary
The discussion focuses on how wind and plane angles impact flight direction and speed, using a specific example of a plane flying west at 235 km/h encountering a north wind at 45 km/h. The calculations involve determining the resultant velocity and angle using trigonometric equations and vector addition. The correct resultant speed is confirmed as 239.27 km/h, with the angle needing adjustment to reflect standard navigation practices. Clarifications are sought regarding angle definitions for cardinal directions, specifically that due north and south correspond to 90 degrees, while due east and west are 0 degrees. The conversation emphasizes the importance of understanding vector components and their implications for flight dynamics.
ilene
Messages
1
Reaction score
0
Example question:
A plane is flying due west at 235 km/h and encounters a wind from the north at 45 km/h. What is the plane's new velocity with respect to ground in standard location?

Equations:
Plane Equation (magnitude) (COS Angle) = x and (magnitude) (SIN Angle) =y
Wind Equation (magnitude) (COS ANgle) =x and (magnitude) (SIN Angle) =y
adding your x's and y's

Angle tan-1 y/x

plane angle + wind angle = adjusted angle
adjusted angle - new angle = current angle

Magnitude = square root of x squared and y squared

My attempt:
Before I start I just want to apologise for spelling all my equations out because I have no idea what I am doing here. This is my first time taking a physics course and I am completely lost

THe first issue that I was presented in this problem is finding out the angles. Which I am still unsure about. I know for example, northeast with no angle is a 45 degree angle, but if it is due north, due east, due south and due west i really have no idea. If someone can clarify that for me that would be great.

Plane:
(235 km/h) (COS 0) =235 (235km/h) (SIN 0) =0
* I picked 0 for the angle (due west) because flying in a horizontial line would not have an angle?!*

Wind:
(45 km/ h) (COS 90) = 0 (45 km/h) (SIN 90) =45
* I picked 90 for the angle (due north) because flying in a vertical line would create a 90 degree?!*

Current Angle:
x=235+0=235
y=0+45=45

angle tan-1 = 235/45 =79.11

180+90=270-79.11=190.89

Current Magnitude:

square root (235) squared + (45) squared = 239.27

New velocity to respect of ground 239.27 km/h < 190.89 WN

I tried to make an educated guess on my vector angles, but am unsure if I chose wisely. Besides checking my work can someone clarify that due north and south will always be 90 degrees and due east and west will always be 0 degrees (unless otherwise specified).

Thank you,
Ilene
 
Physics news on Phys.org
Your answer for speed is correct.

Although you could have simply used Pythagoras: A2 + B2 = C2.

2352 + 452 = C2
Sqrt(2352 + 452) = C

So now you have the resultant speed which is 239.27 and you know that will be between West and South (wind coming from the North = heading South).

To get the resultant angle, do it wrt South. So your hypotenuse is 239.27 and your adjacent is 45. Combine that with SOH CAH TOA: Cos(theta) = a/h ad that gives you the angle the aircraft will be flying in wrt South.

Now, it asks for standard location so I'd assume that means you need to give it wrt North - in this case, just add 180 (angle from North to South) and you have a heading clockwise from North which is how headings are given on an aircraft.
 
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
Back
Top