Determining the time interval in a radiation counting problem

AI Thread Summary
The discussion revolves around determining the time interval in a radiation counting problem using a given formula. Participants explore how to manipulate the equation to isolate time (t) and consider integrating both sides from 0 to a specified time. There is clarification on the significance of the variable t' as a dummy variable for integration purposes. One participant concludes that they can express the probability function as 1 - exp(-Cn_dot * t) and successfully figures out how to sample the time. The conversation highlights the importance of understanding the integration process and the role of time variables in the context of radiation events.
SKT_90
Messages
13
Reaction score
0

Homework Statement


Given: Cn_dot = true event rate = 10 interactions/s
p(t')dt' = differential probability of an event

Homework Equations



p(t')dt' = Cn_dot * exp(-Cn_dot * t') dt'

The Attempt at a Solution


[/B]
I want to sample the time interval using python. But I'm not sure how to go about manipulating the formula to get t.

Should I integrate both sides from 0 to x and isolate for t? I'm not sure what to make of the LHS.
 
Physics news on Phys.org
What do you mean by "to get t"?
What do you want to do?
 
mfb said:
What do you mean by "to get t"?
What do you want to do?
I think if this is to be run through a program, then a suitable value for Δt should be chosen. Is that what you mean @SKT_90 ?
Also, what is the significance of t prime, vs just t?
It looks to me that if you integrate it from 0 to time T, you will have a probability function that it happens in T seconds.
 
scottdave said:
I think if this is to be run through a program, then a suitable value for Δt should be chosen. Is that what you mean @SKT_90 ?
Also, what is the significance of t prime, vs just t?
It looks to me that if you integrate it from 0 to time T, you will have a probability function that it happens in T seconds.

Hi scottdave,

Yes - this is what I mean to do. I think t' is just a dummy variable as stated in the question, so we can integrate it from 0 to t.
 
So i get :

1 - exp(-Cn_dot * t) = p(t)

I'm not sure how to sample the time from here?
 
nvm, figured it out
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Back
Top