Did I skip a major step in this proof? + Theory of this proof

flyingpig
Messages
2,574
Reaction score
1

Homework Statement

[PLAIN]http://img717.imageshack.us/img717/2285/unledxig.png

The problem is to verify (v), that is for some x and y in R, we have (-x)(-y) = xy

The Attempt at a Solution



(-x)(-y) = (-1)x * (-1)y by Prop 2.7 iv

= x*(-1) * (-1)y by M2
= x*(-1*-1) * y by M1
= x*(+1)*y
= xy

Q.E.D

Not sure if I did it right.

Now I am going to throw in another question.

My prof did a lot of proofs in class in the similar manner as me (except for being wrong...). The thing is that they all look so silly. Like why do I have to go throw all this trouble just to show that (-1)(-1) = +1? That took like 4 lines. This is like math made unnecessarily hard.
 
Last edited by a moderator:
Physics news on Phys.org
Actually wait, I didn't need 4 lines at alll...

(-x)(-y) = (-1)x(-1)y By Prop.2.7 iv

=(-1)(-1)xy byM2

= 1 * xy By M3

= xy

Q.E.D.
 
Any comment is fine...
 
Couldnt agree with you more that this is math made unnecessarily hard, but I think you have to show -1*-1=1
 
Punkyc7 said:
Couldnt agree with you more that this is math made unnecessarily hard, but I think you have to show -1*-1=1

Yeah I took that for granted...

I don't know how to do that
 
1= 1+0= ?

does that help
 
Punkyc7 said:
1= 1+0= ?

does that help

1 = 1 + 0 = 1 + 1 - 1?

But this is addition.
 
yes...but you can distribute a -1 by prop 4 and m4D
 
Punkyc7 said:
yes...but you can distribute a -1 by prop 4 and m4D

I have one -1 though
 
  • #10
pull out a negative one
 
  • #11
punkyc7 said:
pull out a negative one

-1(-1 - 1 + 1)
 
  • #12
now what do you notice...
 
  • #13
1 = 1 + 0 = 1 + 1 - 1 = -1(-1 - 1 + 1)

1 = -1(-1 + 0)
1 = -1(-1)

Is that it? Because this seem really really unnecessary...
 
  • #14
yep... that is it, and I could not agree more, but pure math people seem to love this kind of stuff because now they now for sure that -1*-1=1 and they are not relying on what others have said before
 
  • #15
How do I include that in my original proof?

Assume (-x)(-y) = xy

Conditions [ =(-x)(-y) = (-1)x * (-1)y by Prop 2.7 iv
= x*(-1) * (-1)y by M2
= x*(-1*-1) * y by M1
= stuck here. How do I introduce 1 = 1 + 0 unawkwardly?]

Result [...]

Q.E.D
 
  • #16
just call it a lemma and put it before the proof.. of course if you have proven it before you do not need to include but I am guessing you havent.

lemma 1 = -1(-1)

pf/
1 = 1 + 0 = 1 + 1 - 1 = -1(-1 - 1 + 1)

1 = -1(-1 + 0)
1 = -1(-1)

pf/
(-x)(-y) = (-1)x * (-1)y by Prop 2.7 iv

= x*(-1) * (-1)y by M2
= x*(-1*-1) * y by M1
= x*(+1)*y
= xy

Q.E.D
 
  • #17
Lemma: (-1)(-1) = 1 or do I have to write out that whole step we did...?
 
  • #18
All the step. Or how is someone who is reading your proof going to know that -1*-1=1 if it hasnt been shown to them.
 
  • #19
Punkyc7 said:
All the step. Or how is someone who is reading your proof going to know that -1*-1=1 if it hasnt been shown to them.

But I thought Lemma was the results, not the proof. Isn't it just showing the results that you should believe in?
 
  • #20
you can't believe in anything anymore it must be proven to be true.
 
  • #21
Lemma: (-1)(-1) = 1

1 = 1 + 0 = 1 + 1 - 1 = -1(-1 - 1 + 1) = -1(-1 + 0) = (-1)(-1)

Proof: (-x)(-y) = xy= x*(-1) * (-1)y by M2
= x*(-1*-1) * y by M1
= x*(+1)*y
= xy

Q.E.D

Did I need to include "by ..." in my Lemma? Why is it that I didn't need to show that 1 - 1 = 0?
 
  • #22
That looks good, I don't think you need to include the by lemma but if you want to be extra clear you can put it in, also you don't need to because of field properties
 
Back
Top