VinnyCee
- 486
- 0
Here is the problem:
X'\,=\,\left(\begin{array}{cc} 0 & 2 \\ -1 & 3 \end{array}\right)\,X\,+\left(\begin{array}{c} 2 \\ e^{-3t}\end{array}\right)
Here is what I have:
r_1\,=\,2,\,\,\,\,\,\,r_2\,=\,1
u_1'\,=\,-2\,e^{-2t}\,+2\,e^{-5t}
u_2'\,=\,2\,e^{-t}\,-\,e^{-4t}
\psi\,=\,\left(\begin{array}{cc} e^{2t} & 2\,e^t \\ e^{2\,t} & e^t \end{array}\right)
After integrating the u_1 and u_2 terms and multiplying the answer by \psi, I get:
X\,=\,\left(\begin{array}{c} C_1\,e^{2t}\,+\,2\,C_2\,e^t\,+\,\frac{1}{10}\,e^{-3t}\,-\,3 \\ C_1\,e^{2t}\,+\,C_2\,e^t\,-\,\frac{3}{20}\,e^{-3t}\,-\,1 \end{array}\right)
Then seperating and combining terms:
X\,=\,C_1\,e^{2t}\,\left(\begin{array}{c} 1 \\ 1 \end{array}\right)\,+\,C_2\,e^t\,\left(\begin{array}{c} 2 \\ 1 \end{array}\right)\,+\,\frac{1}{20}\,\left(\begin{array}{cc} 2\,e^{-3t}\,-\,60 \\ 3\,e^{-3t}\,-\,20 \end{array}\right)
Does this look correct? Thanks.
X'\,=\,\left(\begin{array}{cc} 0 & 2 \\ -1 & 3 \end{array}\right)\,X\,+\left(\begin{array}{c} 2 \\ e^{-3t}\end{array}\right)
Here is what I have:
r_1\,=\,2,\,\,\,\,\,\,r_2\,=\,1
u_1'\,=\,-2\,e^{-2t}\,+2\,e^{-5t}
u_2'\,=\,2\,e^{-t}\,-\,e^{-4t}
\psi\,=\,\left(\begin{array}{cc} e^{2t} & 2\,e^t \\ e^{2\,t} & e^t \end{array}\right)
After integrating the u_1 and u_2 terms and multiplying the answer by \psi, I get:
X\,=\,\left(\begin{array}{c} C_1\,e^{2t}\,+\,2\,C_2\,e^t\,+\,\frac{1}{10}\,e^{-3t}\,-\,3 \\ C_1\,e^{2t}\,+\,C_2\,e^t\,-\,\frac{3}{20}\,e^{-3t}\,-\,1 \end{array}\right)
Then seperating and combining terms:
X\,=\,C_1\,e^{2t}\,\left(\begin{array}{c} 1 \\ 1 \end{array}\right)\,+\,C_2\,e^t\,\left(\begin{array}{c} 2 \\ 1 \end{array}\right)\,+\,\frac{1}{20}\,\left(\begin{array}{cc} 2\,e^{-3t}\,-\,60 \\ 3\,e^{-3t}\,-\,20 \end{array}\right)
Does this look correct? Thanks.