Zaknife
- 10
- 0
Homework Statement
Particle is moving along the curve parametrized as below (x,y,z) in uniform gravitational field. Using Euler- Lagrange equations find the motion of the particle.
The Attempt at a Solution
\begin{array}{ll} x=a \cos \phi & \dot{x}= -\dot{\phi} a \sin \phi \\<br /> y=a \sin \phi & \dot{y}=\dot{\phi} a \cos \phi \\<br /> z=b \phi & \dot{z}= b \dot{\phi} \\<br /> \end{array}<br />
Lagrangean will be :
L=T-V=\frac{m}{2}\dot{\phi}^{2}(a^{2}+b^{2})-mgb\phi
Using Euler-Lagrange equations we obtain:
\frac{d}{dt}\left(\frac{\partial \mathcal{L}}{\partial \dot{q_{l}}}\right)-\frac{\partial \mathcal{L}}{\partial q_{l}}=0
m\ddot{\phi}(a^{2}+b^{2})+mgb=0
How to deal with such differential equation ?