Differential Geometry general question

InbredDummy
Messages
82
Reaction score
0
Ok, in general, I know that if the coefficients of the First Fundamental Form agree for two surfaces parameterized by X and Y, the the map X(Y^-1) is an isometry, or the two surfaces are isometric.

I also know that if two parameterizations don't have the same coefficients, this does not imply that the two surfaces are not isometric.

So i have two parameterizationsthat have different coefficients of the FFF (first fundamental form) but have the same Gaussian curvature. I need to prove that the two surfaces are not isometric. (ie i need to prove that the converse of Gauss's Great Theorem is false).
 
Physics news on Phys.org
bump bump any help?
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top