z.js
- 57
- 0
Homework Statement
15. The series $$a+ar-ar^2-ar^3+ar^4+ar^5-ar^6-ar^7+...,$$
where ##a>0##, has its ##k##th term, ##T_k##, defined by
$$T_k=ar^{k-1}$$ if ##k## is of the form ##4p-3## or ##4p-2## and
$$T_k=-ar^{k-1}$$ if ##k## is of the form ##4p-1## or ##4p,##
where p is a positive integer. By rewriting the series as the sum of two geometric series, or otherwise, prove that the sum to ##4n## terms of the series is $$\frac{a(1+r)(1-r^4n)}{(1+r^2)}.$$
Homework Equations
$$S_n=\frac{a(1-r^n)}{1-r}$$
The Attempt at a Solution
$$a+ar-ar^2-ar^3+ar^4+ar^5-ar^6-ar^7+...$$
$$=(a+ar+ar^4+ar^5+...)-(ar^2+ar^3+ar^6+ar^7+...)$$
$$=(a+ar^4+ar^8+...)+(ar+ar^5+ar^9+...)-(ar^2+ar^6+ar^10+...)-(ar^3+ar^7+ar^{11}+...)$$
$$={}^1 S_n +{}^2 S_n +{}^3 S_n +{}^4 S_n$$
$$=\frac{a(1-(r^{4n})}{1-r^4}+\frac{ar(1-(r^{4n})}{1-r^4}-\frac{ar^2(1-(r^{4n})}{1-r^4}-\frac{ar^3(1-(r^{4n})}{1-r^4}$$
$$=a(1+r+r^2+r^3)\frac{a(1-r^{4n})}{(1-r^4)}$$
and now I am stUCK in the mUCK YUCK! I don't know how to factorise ##1+r+r^2+r^3##.
Last edited: