Graduate Difficulties with derivative of a vector [Landau Textbook]

Click For Summary
SUMMARY

This discussion focuses on computing the derivative of a vector function, specifically in the context of Landau's textbook. The user seeks clarification on the derivative of the function ##f## with respect to time and spatial coordinates, particularly in relation to the vector ##r## and its time-dependent counterpart ##r_a##. The calculations involve the expressions for the derivatives and their implications on the function ##f = -(k/2) \sum_a m_a |\mathbf{r} - \mathbf{r}_a|##, leading to the final equation for ##h_{0 \alpha}##. The notation for the unit vector component ##n_{a \alpha}## is clarified as representing the ##\alpha## component of the vector ##\mathbf{n}_a##.

PREREQUISITES
  • Understanding of vector calculus and derivatives
  • Familiarity with the notation used in theoretical physics, particularly in Landau's texts
  • Knowledge of the concepts of spatial and time dependence in vector fields
  • Proficiency in manipulating mathematical expressions involving summations and derivatives
NEXT STEPS
  • Study the derivation of vector functions in Landau's "The Classical Theory of Fields"
  • Learn about the implications of spatial and temporal derivatives in physics
  • Explore the concept of unit vectors and their applications in vector calculus
  • Investigate the use of summation notation in theoretical physics, particularly in the context of multiple sources
USEFUL FOR

Students and professionals in physics, particularly those studying classical mechanics or field theory, as well as anyone interested in advanced vector calculus and its applications in theoretical contexts.

GrimGuy
Messages
11
Reaction score
2
Hi guys, I'm having trouble computing a pass 1 to 106.15. It's in the pictures.

1618494074718.png


So, what a have to do is the derivative of ##f## with respect to time and coordinates. Then I need to rearrange the terms to find the equation 106.15. I am using the following conditions. ##r## vector varies in space and the vector ##r_a## varies in time.

I did that:
1618494870010.png


This calculus is from. (Section 106)
1618494426971.png
 

Attachments

  • 1618494413115.png
    1618494413115.png
    89.1 KB · Views: 189
Physics news on Phys.org
The spatial dependence of ##f## is in the argument ##\mathbf{r}##, whilst the time dependence is in the source positions ##\mathbf{r}_a##\begin{align*}
\partial_{\alpha} |\mathbf{r} - \mathbf{r}_a| &= \frac{x_{\alpha} - x_{a \alpha}}{|\mathbf{r} - \mathbf{r}_a|} = n_{a \alpha}

\end{align*}Then taking the time derivative\begin{align*}
\partial_t \partial_{\alpha} |\mathbf{r} - \mathbf{r}_a| = \partial_t \left( \frac{x_{\alpha} - x_{a \alpha}}{|\mathbf{r} - \mathbf{r}_a|} \right) &= \frac{-v_{a \alpha}}{|\mathbf{r} - \mathbf{r}_a|} + (x_{\alpha} - x_{a \alpha}) \partial_t \left( \frac{1}{|\mathbf{r} - \mathbf{r}_a|} \right) \\

&= \frac{-v_{a \alpha}}{|\mathbf{r} - \mathbf{r}_a|} + \frac{-(x_{\alpha} - x_{a \alpha})}{|\mathbf{r} - \mathbf{r}_a|^2} \left( \frac{(\mathbf{r} - \mathbf{r}_a) \cdot (-\mathbf{v}_a )}{|\mathbf{r} - \mathbf{r}_a|} \right) \\

&= \frac{-v_{a \alpha}}{|\mathbf{r} - \mathbf{r}_a|} + \frac{n_{a \alpha} (\mathbf{n}_a \cdot \mathbf{v}_a)}{|\mathbf{r} - \mathbf{r}_a|}

\end{align*}Hence if ##f = -(k/2) \sum_a m_a |\mathbf{r} - \mathbf{r}_a |##, then\begin{align*}

\frac{\partial^2 f}{\partial t \partial x^a} &= \frac{k}{2} \sum_a m_a \left[ \frac{v_{a \alpha}}{|\mathbf{r} - \mathbf{r}_a|} - \frac{n_{a \alpha} (\mathbf{n}_a \cdot \mathbf{v}_a)}{|\mathbf{r} - \mathbf{r}_a|} \right]\end{align*}and consequently\begin{align*}
h_{0 \alpha} &= \frac{8k}{2c^3} \sum_a \frac{m_a v_{a\alpha}}{|\mathbf{r} - \mathbf{r}_a|} - \frac{k}{2c^3} \sum_a \left[ \frac{m_av_{a \alpha}}{|\mathbf{r} - \mathbf{r}_a|} - \frac{m_a n_{a \alpha} (\mathbf{n}_a \cdot \mathbf{v}_a)}{|\mathbf{r} - \mathbf{r}_a|} \right] \\

&= \frac{k}{2c^3} \sum_a \frac{m_a}{|\mathbf{r} - \mathbf{r}_a|} \left[ 7v_{a \alpha} + n_{a \alpha} (\mathbf{n}_a \cdot \mathbf{v}_a ) \right]\end{align*}
 
Last edited by a moderator:
etotheipi said:
The spatial dependence of ##f## is in the argument ##\mathbf{r}##, whilst the time dependence is in the source positions ##\mathbf{r}_a##\begin{align*}
\partial_{\alpha} |\mathbf{r} - \mathbf{r}_a| &= \frac{x_{\alpha} - x_{a \alpha}}{|\mathbf{r} - \mathbf{r}_a|} = n_{a \alpha}

\end{align*}Then taking the time derivative\begin{align*}
\partial_t \partial_{\alpha} |\mathbf{r} - \mathbf{r}_a| = \partial_t \left( \frac{x_{\alpha} - x_{a \alpha}}{|\mathbf{r} - \mathbf{r}_a|} \right) &= \frac{-v_{a \alpha}}{|\mathbf{r} - \mathbf{r}_a|} + (x_{\alpha} - x_{a \alpha}) \partial_t \left( \frac{1}{|\mathbf{r} - \mathbf{r}_a|} \right) \\

&= \frac{-v_{a \alpha}}{|\mathbf{r} - \mathbf{r}_a|} + \frac{-(x_{\alpha} - x_{a \alpha})}{|\mathbf{r} - \mathbf{r}_a|^2} \left( \frac{(\mathbf{r} - \mathbf{r}_a) \cdot (-\mathbf{v}_a )}{|\mathbf{r} - \mathbf{r}_a|} \right) \\

&= \frac{-v_{a \alpha}}{|\mathbf{r} - \mathbf{r}_a|} + \frac{n_{a \alpha} (\mathbf{n}_a \cdot \mathbf{v}_a)}{|\mathbf{r} - \mathbf{r}_a|}

\end{align*}Hence if ##f = -(k/2) \sum_a m_a |\mathbf{r} - \mathbf{r}_a |##, then\begin{align*}

\frac{\partial^2 f}{\partial t \partial x^a} &= \frac{k}{2} \sum_a m_a \left[ \frac{v_{a \alpha}}{|\mathbf{r} - \mathbf{r}_a|} - \frac{n_{a \alpha} (\mathbf{n}_a \cdot \mathbf{v}_a)}{|\mathbf{r} - \mathbf{r}_a|} \right]\end{align*}and consequently\begin{align*}
h_{0 \alpha} &= \frac{8k}{2c^3} \sum_a \frac{m_a v_{a\alpha}}{|\mathbf{r} - \mathbf{r}_a|} - \frac{k}{2c^3} \sum_a \left[ \frac{m_av_{a \alpha}}{|\mathbf{r} - \mathbf{r}_a|} - \frac{m_a n_{a \alpha} (\mathbf{n}_a \cdot \mathbf{v}_a)}{|\mathbf{r} - \mathbf{r}_a|} \right] \\

&= \frac{k}{2c^3} \sum_a \frac{m_a}{|\mathbf{r} - \mathbf{r}_a|} \left[ 7v_{a \alpha} + n_{a \alpha} (\mathbf{n}_a \cdot \mathbf{v}_a ) \right]\end{align*}
Thx man, I'll take a time to understand and check it. Thank you a lot.

EDIT: I checked it and everything is fine and i could undestand the whole explanation, except for one little thing. What u were considering to write it '##n_{a \alpha}##'. It is the modul of the unit vector, or it is just a simplifyed notation to write ##\frac{x_{\alpha} - x_{a \alpha}}{|\mathbf{r} - \mathbf{r}_a|}## ?
 
Last edited:
GrimGuy said:
EDIT: I checked it and everything is fine and i could undestand the whole explanation, except for one little thing. What u were considering to write it '##n_{a \alpha}##'. It is the modul of the unit vector, or it is just a simplifyed notation to write ##\frac{x_{\alpha} - x_{a \alpha}}{|\mathbf{r} - \mathbf{r}_a|}## ?
Not the modulus, it's the second option: the ##\alpha## component of the vector ##\mathbf{n}_a := (\mathbf{r} - \mathbf{r}_a)/|\mathbf{r} - \mathbf{r}_a|##, as L&L define below the bit you posted. So ##n_{a \alpha} := (\mathbf{r} - \mathbf{r}_a)_{\alpha}/|\mathbf{r} - \mathbf{r}_a| = (x_{\alpha} - x_{a \alpha})/|\mathbf{r} - \mathbf{r}_a|##

I'll admit it's a slightly confusing notation on the authors' part, using ##a## to enumerate the different sources and ##\alpha## to denote vector components 😜
 
Relativistic Momentum, Mass, and Energy Momentum and mass (...), the classic equations for conserving momentum and energy are not adequate for the analysis of high-speed collisions. (...) The momentum of a particle moving with velocity ##v## is given by $$p=\cfrac{mv}{\sqrt{1-(v^2/c^2)}}\qquad{R-10}$$ ENERGY In relativistic mechanics, as in classic mechanics, the net force on a particle is equal to the time rate of change of the momentum of the particle. Considering one-dimensional...

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 19 ·
Replies
19
Views
4K
Replies
3
Views
2K
Replies
6
Views
1K
  • · Replies 3 ·
Replies
3
Views
3K