Why Is Diffraction More Evident When Slit Width Matches Wavelength?

AI Thread Summary
Diffraction is more pronounced when the slit width is comparable to the wavelength because narrower slits allow greater spreading of waves due to interference effects, which can be analyzed using the Fraunhofer diffraction integral. In cases of total destructive interference, energy is conserved and redirected rather than lost, as demonstrated by antennas that radiate power in specific directions while canceling energy in others. The discussion also raises questions about the relationship between rectilinear propagation of light and Huygen's principle, suggesting a potential incompatibility since each point on a wavefront can act as a source of circular wavelets. The interaction of waves at different angles and the resulting energy distribution is a complex topic that warrants further exploration. Overall, these concepts highlight the intricate nature of wave behavior in optics and interference phenomena.
Dragynfyre
Messages
20
Reaction score
0
This isn't exactly a homework question but just a few conceptual questions I'm confused about. First off on the topic of diffraction I notice many textbooks and other resources say that diffraction is more evident when the width of a slit is close to the wavelength of the wave. However, they don't give an explanation of why this is so can anyone here give an explanation of this?

Also on a related note when two waves meet they will experience constructive or destructive interference according to the principle of superposition. However, since the energy of a wave is related to the square of it's amplitude what happens to the energy when total destructive interference occurs?

EDIT: Also another question. In optics if an object is placed at a distance from a convex lens like in this picture http://upload.wikimedia.org/wikipedia/commons/9/97/Lens3b.svg and the image is magnified will the image still appear bigger even though it appears to form at a further distance from the viewer?
 
Last edited:
Physics news on Phys.org
Most interesting questions! I think I know the answers, but hope others will write in, too.

Single slit diffraction causes the waves to spread out. The amount of spreading into the shadow area depends on the width of the slit and the wavelength. The narrower the slit, down to the wavelength, the greater the spreading. This is due to interference of the light from each part of the slit opening and can be calculated from the Fraunhofer diffraction integral. The waves going out at larger angles are canceled out by waves from other parts of the slit when the slit is large.

Where does the energy go in destructive interference? I puzzled over that one for a long time and finally it clicked when studying how antennas radiate power. A simple dipole antenna, say a CB antenna on each side of a big truck, acts like two point sources when looking down from above (like looking at two vibrating points in a water ripple tank). When the antennas are half a wavelength apart and in phase, you get total destructive interference to the sides. The incredible thing is that it conserves energy: all the power going into the antenna radiates ahead of the truck and behind the truck - none is "lost" in destructive interference to the sides. It is as if the EM waves are intelligent and just don't carry any energy to the areas where cancellation occurs.
 
Hmm interesting but I don't understand why the waves going out at wider angles on a wider slit is canceled out more than on a thinner slit. If you have a diagram or something to illustrate this then that would be very helpful.

Also another question. Is the concept of the rectilinear propagation of light and Huygen's principle incompatible? Since each point on a wavefront acts as a point source wouldn't a wave front with a wave ray going in one direction create a circular wavelet with wave rays going in multiple directions?
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top