shoehorn
- 420
- 2
Suppose that we take the delta function \delta(x) and a function f(x). We know that
\int_{-\infty}^{\infty} f(x)\delta(x-a)\,dx = f(a).
However, does the following have any meaning?
\int_{-\infty}^{\infty} f(x)\delta(x-a)\delta(x-b)dx,
for some constants -\infty<a,b<\infty.
\int_{-\infty}^{\infty} f(x)\delta(x-a)\,dx = f(a).
However, does the following have any meaning?
\int_{-\infty}^{\infty} f(x)\delta(x-a)\delta(x-b)dx,
for some constants -\infty<a,b<\infty.