Dirac delta function of a function of several variables

amjad-sh
Messages
240
Reaction score
13
Homework Statement
In fact, I'm working on deriving the equations included in a theoretical condensed matter physics paper.
I reached the part where the normal charge current density is represented by $$J_y^N(z<0)=-\sum_{\mathbf{p},k}2i\dfrac{e}{m}p_yr_xsin(2k_z)\delta(\varepsilon_{p,k}-E_f)\triangle\mu_L^x$$ and we need to prove that it is equal to ##\dfrac{-ek_f^2s}{(2\pi^2)}g(\nu,2k_fz)\triangle\mu_L^x##
It is not important to know what is normal charge current density, or other physical definitions I may mention Later in the post. Because I think knowing them will not serve in solving the problem.
Relevant Equations
##g(\nu,2k_fz)## is a function.

We assume that ##\hbar=1## where ##\hbar## is the planck constant

##\varepsilon_{\mathbf{p},k}=\dfrac{k_x^2}{2m}+\dfrac{k_y^2}{2m}+\dfrac{k_z^2}{2m}## is the energy corresponding to one particle and ##k_x##,##k_y## and ##k_z## are the momentum in x,y and z directions respectively.

##E_f=\dfrac{k_f^2}{2m}=##constant.

##\sum_{\mathbf p,k}##is the summation over all k's in the k-space.

##r_x=\dfrac{Ak_yk_z}{k_z+\sqrt{k_z^2-2mV})^2+c}##

##p_y=K_y##

##\delta(x)## is the dirac delta function.
Form solid state physics, we know that the volume of k-space per allowed k-value is ##\triangle{\mathbf{k}}=\dfrac{8\pi^3}{V}##
##\sum_{\mathbf{k}}F(\mathbf{k})=\dfrac{V}{(2\pi)^3}\sum_{\mathbf{k}}F(\mathbf{k})\triangle{\mathbf{k}}##
##\dfrac{1}{V}\sum_{\mathbf{k}}F(\mathbf{k})=\dfrac{1}{(2\pi)^3}\sum_{\mathbf{k}}F(\mathbf{k})\triangle{\mathbf{k}}##
When V##\rightarrow \infty \dfrac{1}{V}\sum_{\mathbf{k}}F(\mathbf{k}) \rightarrow \dfrac{1}{(2\pi)^3}\int F(\mathbf{k}) \, d\mathbf{k}##

Now ##-\sum_{\mathbf{p},k}\dfrac{2ie}{m}p_yr_xsin(2k_z)\delta(\varepsilon_{p,k}-E_f)\triangle{\mu_L^x} \rightarrow -\dfrac{1}{(2\pi)^3}\int F(k_x,k_y,k_x)\delta(\varepsilon_{p,k}-E_f)dk_xdk_ydk_z##
Where ##F(k_x,k_y,k_z)=\dfrac{2ie}{m}k_y\Bigg (\dfrac{2is\nu^2k_yk_z}{(k_z+\sqrt{k_z^2-2mv})^2+c}\Bigg )sin(2k_zz)##
##\delta(\varepsilon_{p,k}-E_k)=\delta(\dfrac{k_x^2}{2m}+\dfrac{k_y^2}{2m}+\dfrac{k_z^2}{2m}-\dfrac{k_f^2}{2m})##
then$$-\dfrac{1}{(2\pi)^3}\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}\int_{-\infty}^{\infty} F(k_x,k_y,k_x)\delta(\varepsilon_{p,k}-E_f)dk_xdk_ydk_z=$$
$$-\dfrac{1}{(2\pi)^3}\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}\dfrac{2ie}{m}k_y^2\Bigg (\dfrac{2is\nu^2k_z}{(k_z+\sqrt{k_z^2-2mv})^2+c}\Bigg )sin(2k_zz)\delta(\dfrac{k_x^2}{2m}+\dfrac{k_y^2}{2m}+\dfrac{k_z^2}{2m}-\dfrac{k_f^2}{2m})\, dk_xdk_ydk_z$$

What is stopping me of completing the derivation is that how we can use ##\delta(\dfrac{k_x^2}{2m}+\dfrac{k_y^2}{2m}+\dfrac{k_z^2}{2m}-\dfrac{k_f^2}{2m})## to solve the integral?
I searched a lot in google to find an identity regarding this type of Dirac delta function, but I couldn't find anything.
 
Physics news on Phys.org
I think similar functions occur when looking at covariant electrodynamics (e.g. Jackson). In general , assume ##f## is a 'nice' function, and so is ##h##. Let function ##h## go to zero at ##x_0##, and let ##\frac{dh}{dx}_{x=x0}=h'_0\neq 0##

##\int dx f\left(x\right) \delta\left(h\left(x\right)\right)=f\left(x_0\right) \int^{\epsilon}_{-\epsilon} \delta\left(h'_0 x\right)dx=f\left(x_0\right) \int^{h'_0\left(\epsilon\right)}_{h'_0\left(-\epsilon\right)} \delta\left(y\right)\frac{dy}{h'_0}=\frac{f\left(x_0\right)}{h'_0}##

Now let the first derivative vanish too, but keep the second one, i.e. ##h\left(x\approx x_0\right)=\frac{h''_0}{2}\left(x-x_0\right)^2##. This time the integral will only converge if ##f\left(x\approx x_0\right)=g\left(x\right)\left(x-x_0\right)##

##\int dx f\left(x\right) \delta\left(h\left(x\right)\right)=\int^{\epsilon+x_0}_{-\epsilon+x_0} dx f\left(x\right) \delta\left(\frac{h''_0}{2}\left(x-x_0\right)^2\right)=\int^{\epsilon+x_0}_{-\epsilon+x_0} dx g\left(x\right)\left(x-x_0\right) \delta\left(\frac{h''_0}{2}\left(x-x_0\right)^2\right)##

Tidy up and change integration variable

##\int dx f\left(x\right) \delta\left(h\left(x\right)\right)=g\left(x_0\right)\,2\int^{\epsilon}_ 0 x\,dx\delta\left(\frac{h''_0}{2}x^2\right)=g\left(x_0\right)\,2\int^{\frac{h''_0}{2}\epsilon^2}_ 0 \frac{dy}{h''_0}\delta\left(y\right)=g\left(x_0\right)\int^{\frac{h''_0}{2}\epsilon^2}_ {-\frac{h''_0}{2}\epsilon^2} \frac{dy}{h''_0}\delta\left(y\right)=\frac{g\left(x_0\right)}{h''_0}##

##\int dx f\left(x\right) \delta\left(h\left(x\right)\right)=\lim_{x->x_0}\frac{f\left(x\right)}{h''_0 \cdot \left(x-x_0\right)}##

This is a generic approach. In your case I would seek to go to spherical coordinates for ##k## and evalate the delta-function in the integral over k-radius.
 
  • Like
Likes amjad-sh
Thanks for your reply!
Cryo said:
This is a generic approach. In your case I would seek to go to spherical coordinates for kkk and evalate the delta-function in the integral over k-radius.

I went to spherical coordinates, but I got stuck with a a little bit nasty integral.
I will show you how I proceeded.
1-First I want to note that I wrote ##r_x## wrongly.
##r_x=\dfrac{2is\nu^2k_yk_z}{(k_z+\sqrt{k_z^2-2mv})^2+(s\nu^2)^2(k_x^2+k_y^2)}##
2- Now in spherical coordinates ##\delta(\dfrac{1}{2m}(k^2-k_f^2))=2m\delta(k^2-k_f^2)=2m(\dfrac{1}{2k_f})\Big[\delta(k-k_f)+\delta(k+k_f)\Big]=\dfrac{m}{k_f}\Big[\delta(k-k_f)+\delta(k+k_f)\Big]##
Where I have used the relations ##\delta(ax)=\dfrac{1}{a}\delta(x)## and ##\delta(x^2-a^2)=\dfrac{1}{2a}\Big[\delta(x-a)+\delta(x+a)\Big]## and## k^2=k_x^2+k_y^2+k_z^2##

3- $$j_y^N(z<0)=-\dfrac{1}{(2\pi)^3}\int_0^{+\infty}\int_0^{\pi}\int_{0}^{2\pi}k^2sin(\theta)\dfrac{2ie}{m}k_y^2\Bigg(\dfrac{2is\nu^2k_z}{(k_z+\sqrt{k_z^2-2mV})^2+(\nu^2s)^2(k_x^2+k_y^2)}\Bigg)sin(2k_zz)\triangle\mu_L^x\dfrac{m}{k_f}\delta(k-k_f)\, d\theta \, d\phi \, dk$$
Now by using the change of variable ##k_x=ksin(\theta)cos(\phi)##
##\qquad \qquad \qquad \qquad \qquad \qquad \qquad k_y=ksin(\theta)sin(\phi)##
##\qquad \qquad \qquad \qquad \qquad \qquad \qquad k_z=kcos(\theta)##
$$j_y^N(z<0)=-\dfrac{1}{(2\pi)^3}\int_0^{+\infty}\int_0^{\pi}\int_{0}^{2\pi}k^2sin(\theta)\dfrac{2ie}{m}\dfrac{k^2sin^2(\theta)sin^2(\phi)2is\nu^2kcos(\theta)}{(kcos(\theta)+\sqrt{k^2cos^2(\theta)-2mV})^2+(\nu^2s)^2k^2sin^2(\theta)}sin(2kcos(\theta)z)\triangle\mu_L^x\dfrac{m}{k_f}\delta(k-k_f)\, d\theta \, d\phi \, dk$$

$$j_y^N(z<0)=-\dfrac{1}{(2\pi)^3}\int_0^{+\infty}\int_0^{\pi}\int_{0}^{2\pi}\dfrac{k^5\dfrac{2ie}{m}sin^3(\theta)sin^2(\phi)2is\nu^2cos(\theta)sin(2kzcos(\theta))\triangle\mu_L^x}{k^2cos^2(\theta)+k^2cos^2(\theta)-2mV+2kcos(\theta)\sqrt{k^2cos^2(\theta)-2mV}+(\nu^2s)^2k^2sin^2(\theta)}\dfrac{m}{k_f}\delta(k-k_f)\, d\theta \, d\phi \, dk$$

4- Now by using the integral ##\int_0^{2\pi} sin^2(\phi) \,d\phi=\pi##$$j_y^N(z<0)=-\dfrac{1}{(2\pi)^3}\Big(\dfrac{-4e\pi}{k_f}\Big)\int_0^{+\infty}\int_0^{\pi}\dfrac{\nu^2k^5sin^3(\theta)scos(\theta)sin(2kzcos(\theta))\triangle\mu_L^x}{k^2cos^2(\theta)+k^2cos^2(\theta)-2mV+2kcos(\theta)\sqrt{k^2cos^2(\theta)-2mV}+(\nu^2s)^2k^2sin^2(\theta)}\delta(k-k_f)\, d\theta \, dk$$

5- By using ##\int_0^{+\infty}f(k)\delta(k-k_f)dk=f(k_f)##

$$j_y^N(z<0)=\dfrac{1}{(2\pi)^3}\Big(\dfrac{4e\pi}{k_f}\Big)\int_0^{\pi}\dfrac{\nu^2k_f^5sin^3(\theta)scos(\theta)sin(2k_fzcos(\theta))\triangle\mu_L^x}{k_f^2cos^2(\theta)+k_f^2cos^2(\theta)-2mV+2k_fcos(\theta)\sqrt{k_f^2cos^2(\theta)-2mV}+(\nu^2s)^2k_f^2sin^2(\theta)}\, d\theta $$

$$j_y^N(z<0)=\dfrac{1}{2(2\pi)^3}(4e\pi)\int_0^{\pi}\dfrac{\nu^2k_f^4sin^3(\theta)scos(\theta)sin(2k_fzcos(\theta))\triangle\mu_L^x}{k_f^2\Bigg(cos^2(\theta)-\dfrac{mV}{k_f^2}+cos(\theta)\sqrt{cos^2(\theta)-\dfrac{2mV}{k_f^2}}+\dfrac{(\nu^2s)^2sin^2(\theta)}{2}\Bigg)}\, d\theta $$

6- Let ##u=cos(\theta)## then ##du=-sin(\theta)d\theta##

$$j_y^N(z<0)=\dfrac{-k_f^2es}{4(\pi)^2}\int_1^{-1}\dfrac{\nu^2(1-u^2)usin(2k_fzu)\triangle\mu_L^x}{u^2-\dfrac{mV}{k_f^2}+u\sqrt{u^2-\dfrac{2mV}{k_f^2}}+\dfrac{(\nu^2s)^2(1-u^2)}{2}}\, du $$

So we can say now that :
##j_y^N(z<0)=\dfrac{-k_f^2es}{(2\pi)^2} g(\nu,2k_fz)\triangle\mu_L^x##
where$$ g(\nu,2k_fz)=
\int_1^{-1}\dfrac{\nu^2(1-u^2)usin(2k_fzu)}{u^2-\dfrac{mV}{k_f^2}+u\sqrt{u^2-\dfrac{2mV}{k_f^2}}+\dfrac{(\nu^2s)^2(1-u^2)}{2}}\, du $$

Does my approach look right, did I do something wrong?
and do you think this integral can be solved analytically? or I need a computer?
 
Sorry for delay. The approach seems right to me, although I do not have time to check the maths thoroughly. The final integral does look nasty, but it is easy to compute numerically (finite domain), so I usually do not bother in such cases.

If I did want to bother with it, I would first try to plot the integrand, estimate the rough magnitude of different terms, and see if there are any approximations I could make. Maybe some of the nastyness never comes into play in your problem.

I would also try looking at the integrand on the complex plane and deforming the path of integration to simplify the evaluation. But, I am not sure this would help.
 
  • Like
Likes amjad-sh
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top