Direction of Magnetic Field for a Charged Rotating Disc

Rahmuss
Messages
222
Reaction score
0

Homework Statement


The question actually asks for the equation for the magnetic field for the rotating disc; but all I'm after is the direction of the magnetic field.


Homework Equations


None were given; but I've been using:
\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}


The Attempt at a Solution


When I use the above equation I get two components to the magnetic field: \hat{r} and \hat{\theta}. That doesn't really make a lot of sense to me. What am I missing?
 
Physics news on Phys.org
The cross product will give you the direction.
 
Rahmuss said:

Homework Statement


The question actually asks for the equation for the magnetic field for the rotating disc; but all I'm after is the direction of the magnetic field.


Homework Equations


None were given; but I've been using:
\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}


The Attempt at a Solution


When I use the above equation I get two components to the magnetic field: \hat{r} and \hat{\theta}. That doesn't really make a lot of sense to me. What am I missing?

The direction of the field depends on where you are measuring it at. If you measure the field along the axis of the disk (presumably the z-axis--- where \theta=0), then the field should point along the axis (assuming the disk is uniformly charged). It may help you to note that \hat{z}=\cos\theta\hat{r}-\sin\theta\hat{\theta}=\hat{r} along the z-axis.
 
waht - Thanks. And that part I understand just fine. There is only a z-component of the electric field, so when I do a cross product, I get both an r-component and a theta-component.

gabbagabbahey - So the way you're describing it, the magnetic field seems to come up at the center of the disk, and then moves out and around to the bottom circling back up along the z-axis again?
 
Rahmuss said:
gabbagabbahey - So the way you're describing it, the magnetic field seems to come up at the center of the disk, and then moves out and around to the bottom circling back up along the z-axis again?

Yes, the field lines are very similar to those of a circular loop of current. After all, the disk can be thought of as a superposition of a very large number of thin circular loops of various radii.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top