tnb
- 2
- 0
Homework Statement
I need to prove that directional derivatives do not commute.
Homework Equations
Thus, I need to show that:
<br /> (\vec{A} \cdot \nabla)(\vec{B} \cdot \nabla f) - (\vec{B} \cdot \nabla)(\vec{A} \cdot \nabla f) = (\vec{A} \cdot \nabla \vec{B} - \vec{B} \cdot \nabla \vec{A}) \cdot \nabla f<br />
The Attempt at a Solution
I used the following vector identity:
\nabla (\vec{C} \cdot \vec{D}) = (\vec{C} \cdot \nabla) \vec{D} + (\vec{D} \cdot \nabla) \vec{C} + \vec{C} \times (\nabla \times \vec{D}) + \vec{D} \times (\nabla \times \vec{C})
And got:
\vec{A} \cdot \left[ \vec{B} \times (\nabla \times \nabla f) + (\vec{B} \cdot \nabla)\nabla f + \nabla f \times (\nabla \times \vec{B}) + (\nabla f \cdot \nabla) \vec{B} \right] - \vec{B} \cdot \left[ \vec{A} \times (\nabla \times \nabla f) + (\vec{A} \cdot \nabla)\nabla f + \nabla f \times (\nabla \times \vec{A}) + (\nabla f \cdot \nabla) \vec{A} \right]
Then I reduced this to:
\vec{A} \cdot \left[ \nabla f \times (\nabla \times \vec{B}) + (\nabla f \cdot \nabla) \vec{B} \right] - \vec{B} \cdot \left[ \nabla f \times (\nabla \times \vec{A}) + (\nabla f \cdot \nabla) \vec{A} \right]
I am not sure how to proceed from here or if I even am on the right track. Any help is much appreciated. Thanks.
Last edited: