Dirichlet eta approximate functional equation

Simpel
Messages
2
Reaction score
0
Concerning Hardy-Littlewood approximate functional equation for the \zeta function
\zeta(s) = \sum_{n\leq x}\frac{1}{n^s} \ + \ \chi(s) \ \sum_{n\leq y}\frac{1}{n^{1-s}} \ + \ O(x^{-\sigma}+ \ |t|^{\frac{1}{2}-\sigma}y^{\sigma - 1})
does somebody know of any similar result for the Dirichlet \eta function ? where \eta (s) is defined as
\eta(s) = \sum_{n=1}^\infty\frac{(-1)^{n-1}}{n^s} = 1-\frac{1}{2^s}+\frac{1}{3^s}-\frac{1}{4^s}+-\ldots
 
Physics news on Phys.org
Is something like this what you were looking for?
\eta(s) = (1- 2^{1-s}) \left( \sum_{n\leq x}\frac{1}{n^s} \ + \ \chi(s) \ \sum_{n\leq y}\frac{1}{n^{1-s}} \ + \ O(x^{-\sigma}+ \ |t|^{\frac{1}{2}-\sigma}y^{\sigma - 1}) \right)
 
that would be too easy,
but that was my fault, as I should have better described what I meant by "similar".
I am interested in expressing the Dirichlet eta function in terms of its partial sums, as well as of the partials sums of its critical line symmetrical one. So, I am looking for something like this (the ? is for a unknown-to-me function, and I am not even sure that such an approximate functional equation might exist ...) :
\eta(s) = \sum_{n\leq x}\frac{(-1)^{n-1}}{n^s} \ + \ ?(s) \ \sum_{n\leq y}\frac{(-1)^{n-1}}{n^{1-s}} \ + \ O( ...)
I would also be happy to try out directly on the Dirichlet Eta (if it makes any sense at all) the method followed by Hardy to get the approximate functional equation for the Zeta function, but I have googled around without finding any detailed description of such method, would anybody know a useful reference ?
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top