Discharge Coefficient of Valve equation

AI Thread Summary
The discussion centers on the Discharge Coefficient of Valve equation from the book "Advanced Water Distribution Modeling and Management." A participant argues that the term V^2 in the discharge equation is unnecessary and suggests a revised equation for Cv. Others point out that the two equations involve different contexts and velocities, indicating that the equations may not be in direct conflict. The distinction between the velocities in the equations is emphasized, suggesting that one represents flow velocity while the other pertains to the descent rate in a reservoir. The conversation highlights the importance of understanding the physical setup and the meaning of each variable in the equations.
Mikealvarado100
Messages
52
Reaction score
0
I have a problem with Discharge Coefficient of Valve equation which is described in book 'advanced water distribution modeling and management'
let me say:

I think the expression V^2 in Discharge Equation (P. 618 of the book mentioned) is extra and the equation must be changed to:
I) Cv=V/[(2gh)^.5]
because other equation for Cv is:
II) Q=Cv (2gh)^0.5 3.14D^2/4
and these two equations are equal.
Additionally the equation P. 402 (equation 9.3) confirms my thought.
What is your idea?
thanx
 
Engineering news on Phys.org
So as not to restrict potential respondents to those who posssess a copy of the book, I suggest you quote the whole of the equation in question and explain the context in which each equation applies.
One possibility that occurs to me is that the v is a change in velocity of the flow before it descends height h to the valve. This might apply to the context of one equation but not the other.
 
haruspex
One equation says that Cv=V/[(2gh+V^2)^.5].
According to another equation: Q=Cv (2gh)^0.5*3.14*D^2/4
These two equations must be equal. Therefore insert Cv from second equation in fist equation. Then you will see the sentence V^2 in first equation is extra. Also you can compare it with another equation: Q=Cf Cv D^2 (P)^0.5. which Cf=constant.
In both of them you can see that V^2 is extra in first equation. Is not it?
Thanx
 
Mikealvarado100 said:
haruspex
One equation says that Cv=V/[(2gh+V^2)^.5].
According to another equation: Q=Cv (2gh)^0.5*3.14*D^2/4
These two equations must be equal. Therefore insert Cv from second equation in fist equation. Then you will see the sentence V^2 in first equation is extra. Also you can compare it with another equation: Q=Cf Cv D^2 (P)^0.5. which Cf=constant.
In both of them you can see that V^2 is extra in first equation. Is not it?
Thanx
As I posted, you need to explain the context: the physical set-up and what each variable means within that set-up.
It is not immediately clear that the two equations are in conflict. One of them involves Q (a volumetric flow rate) and a cross sectional area, the other does not.
Are you quite sure the two Vs in the first equation above are the same? It seems to me they should represent two different velocities.
Can you post an image of the text and any diagrams?
 
Hi
Cv is Discharge Coefficient of a valve which defined the relation between Q and H.
Have a look at image attached. have a look at below page too:
http://www.valvias.com/discharge-coefficient.php
No. Both V are velocity of flow.
Insert Cv from second equation into fist equation and make it simple. It is very easy to do. Then you can see V^2 is extra.
Another equation for Cv is Q=Cf Cv D^2 (P)^0.5. which Cf is constant. You can use this equation too be sure of what I believe.

http://Hi Cv is Discharge Coefficient of a valve which defined the relation between Q and H. Have a look at image attached. have a look at below page too: http://www.valvias.com/discharge-coefficient.php[/PLAIN] http://s6.uplod.ir/i/00777/ofsxrg0ftfbe.jpg
 
Last edited by a moderator:
Mikealvarado100 said:
Hi
Cv is Discharge Coefficient of a valve which defined the relation between Q and H.
Have a look at image attached. have a look at below page too:
http://www.valvias.com/discharge-coefficient.php
No. Both V are velocity of flow.
Insert Cv from second equation into fist equation and make it simple. It is very easy to do. Then you can see V^2 is extra.
Another equation for Cv is Q=Cf Cv D^2 (P)^0.5. which Cf is constant. You can use this equation too be sure of what I believe.

http://Hi Cv is Discharge Coefficient of a valve which defined the relation between Q and H. Have a look at image attached. have a look at below page too: http://www.valvias.com/discharge-coefficient.php[/PLAIN] http://s6.uplod.ir/i/00777/ofsxrg0ftfbe.jpg
The equation without the V2 is an approximation that is valid where the cross sectional area of the reservoir is much greater than that of the valve. In this case, we can ignore the velocity with which the level descends in the reservoir.
The equation with the V2 is correct if that V is taken as referring to the rate of descent of the level in the reservoir. It looks to me as though the distinction between the two velocities has been lost somewhere in copying from an original source.
 
Last edited by a moderator:
How did you find PF?: Via Google search Hi, I have a vessel I 3D printed to investigate single bubble rise. The vessel has a 4 mm gap separated by acrylic panels. This is essentially my viewing chamber where I can record the bubble motion. The vessel is open to atmosphere. The bubble generation mechanism is composed of a syringe pump and glass capillary tube (Internal Diameter of 0.45 mm). I connect a 1/4” air line hose from the syringe to the capillary The bubble is formed at the tip...
Thread 'Physics of Stretch: What pressure does a band apply on a cylinder?'
Scenario 1 (figure 1) A continuous loop of elastic material is stretched around two metal bars. The top bar is attached to a load cell that reads force. The lower bar can be moved downwards to stretch the elastic material. The lower bar is moved downwards until the two bars are 1190mm apart, stretching the elastic material. The bars are 5mm thick, so the total internal loop length is 1200mm (1190mm + 5mm + 5mm). At this level of stretch, the load cell reads 45N tensile force. Key numbers...
I'd like to create a thread with links to 3-D Printer resources, including printers and software package suggestions. My motivations are selfish, as I have a 3-D printed project that I'm working on, and I'd like to buy a simple printer and use low cost software to make the first prototype. There are some previous threads about 3-D printing like this: https://www.physicsforums.com/threads/are-3d-printers-easy-to-use-yet.917489/ but none that address the overall topic (unless I've missed...

Similar threads

Back
Top