Divergence in Polar Coordinates

neutrino2063
Messages
6
Reaction score
0
Why is
\nabla\cdot\vec{A}=\frac{1}{r}\frac{\partial}{\partial r}(rA_{r})+\frac{1}{r}\frac{\partial}{\partial \theta}(A_{\theta})

Where
\vec{A}=A_{r}\hat{r}+A_{\theta}\hat{\theta}
And
\nabla=\hat{r}\frac{\partial}{\partial r}+\hat{\theta}\frac{1}{r}\frac{\partial}{\partial \theta}
Instead of just:

\nabla\cdot\vec{A}=\frac{\partial}{\partial r}(A_{r})+\frac{1}{r}\frac{\partial}{\partial \theta}(A_{\theta})
 
Last edited:
Physics news on Phys.org
Because the unit vectors are actually functions of position in cylindrical coordinates. This means all the derivative in the gradient operator act not only on the components of a particular vector, but also the unit vectors themselves.
 
Back
Top