Divergence Theorm example for 28 Nov 12:00

debian
Messages
7
Reaction score
0

Homework Statement



Let S be a smooth surface enclosing the volume V, and let \vec{n} to be the unit outward normal. Using the Divergence Theorm show that:


∫∫ x \vec{r} ° \vec{n} dS = 4 * ∫∫∫ x dV,

where \vec{r}=(x,y,z)

Homework Equations



Divergence theorm

http://www.math.oregonstate.edu/home...rg/diverg.html

The Attempt at a Solution



I tried to change the form of the those two equations to the form stated in divergence theorm and then to compare the u (or F as in link above), but the u (F) on the left hand side is never equal to this on the right.
 
Last edited by a moderator:
Physics news on Phys.org
Your link is broken. But let's suppose the divergence theorem says \iint (\vec{F} \cdot \vec{n}) dS = \iiint \nabla \cdot \vec{F} dV. Now you are given \vec{F}= x \vec{r}. Can you calculate \nabla \cdot \vec{F}?
 
\nabla \cdot \vec{F} = (d/dx, d/dy, d/dz) \cdot (x^2,xy,xz) = 2x+x+x=4x
 
Last edited:
debian said:
\nabla \cdot \vec{F} = (d/dx, d/dy, d/dz) \cdot (x^2,xy,xz) = 2x+x+x=4x

Good job. :)
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top