Dr.AbeNikIanEdL said:
No, he said that the terms are
used synonymously [by many sources]. As
@vanhees71 pointed out, this is probably not a good idea in the first place. Obviously, in the special cases where particles with identical properties can approximately be distinguished one has to be particularly careful with one’s nomenclatur.
I have always given the definition: Two particles are called indistinguishable or identical if they have the same INTRINSIC properties. Intrinsic are all properties that are defined for a particle at rest, i.e., with vanishing momentum. So you have spin and various charge-like (electric charge, color, flavor) quantum numbers.
Of course you can always dinstinguish such particles by their momentum or position and their polarization/spin-##z## component. For fermions the ##N##-particle Hilbert space is spanned by the totally antisymmetrized product states ("Slater determinants").
In the above mentioned example of two electron, each trapped at different locations, you have a wave function like
$$\Psi(t,\vec{x}_1,\sigma_1;\vec{x}_2,\sigma_2)=\frac{1}{\sqrt{2}} [\psi_1(t,\vec{x}_1,\sigma_1) \psi_2(t,\vec{x}_2,\sigma_2) - \psi_2(t,\vec{x}_1,\sigma_1) \psi_1(t,\vec{x}_2,\sigma_2)].$$
If the single-particle wave functions have negligible spatial overlap you can distinguish the electrons by their position.