Mr Davis 97 said:
Okay, that makes sense to me, and it helps me justify it intuitively in my head. I still have a concern though, specifically about the distinction between scenario 1) and scenario 2) that you described. Say in a proof that I wanted to justify my use of 1); I could just quickly note that ##a_{n+k}## is a subsequence of ##a_n## so that they have the same limit. But for 2), it doesn't seem I can quickly justify it, since ##a_{n-k}## is not a subsequence of ##a_n##. So how could I justify quickly that they have the same limit? Is there something distinct about showing 1) is true versus showing that 2) is true?
Simply cut off the first ##k## elements, they do not affect the convergence. You don't need the subsequence argument. Skip whatever is different and start at the point at which they are identical:
##(1)\, : \,1,2^{-1},3^{-1},4^{-1},5^{-1},6^{-1},\ldots##
##(2)\, : \,100, 200, 300,400,2^{-1}, 3^{-1},\ldots##
##(3)\, : \,6^{-1},7^{-1},8^{-1},\ldots##
For each sequence ##(i)## we have: ##\forall \,\varepsilon>0 \,\exists \,N_i(\varepsilon)\in \mathbb{N} \,\forall \,n>N_i(\varepsilon)\, : \,|a_n-L|<\varepsilon##.
So which sequence you choose, I define ##N(\varepsilon) := \max\{\,N_1(\varepsilon),N_2(\varepsilon),N_3(\varepsilon)\,\} + 9## and stop worrying about subsequences, which example you have chosen, or whether there are smaller values of ##N(\varepsilon)## possible. I don't care. And if you mess around with the first million sequence elements, I will define ##N(\varepsilon):=\max\{\,N_i\,\}+ 1,000,000##.
Now assume we know the convergence of sequence ##(i)## and want to prove the convergence for sequence ##(j)##. They are all equal from ##a_n=6^{-1}## on. This corresponds to ##n=6## for sequence ##(1)##, ##n=9## for sequence ##(2)## and ##n=1## for sequence ##(3)##. So the value ##N_j(\varepsilon)## can be chosen as ##N_j(\varepsilon)=N_i(\varepsilon)+9## since we know for sure that for all ##n>N_j(\varepsilon)## we have ##|a_n-L|<\varepsilon## from the convergence of sequence ##(i)##.