Apologies in advance if this is obvious but here are several related results without L'Hospital's Rule or Taylor Series...
(1) \lim_{x \rightarrow 0} \frac{\cos x -1}{x} = 0.
Proof.
Since
x is approaching 0 it is safe to assume -\pi / 2 < x < \pi / 2. For
x in this interval, cos(x) > 0 and therefore
\cos x = \sqrt{1-\sin^2 x}
So,
\lim_{x \rightarrow 0} \frac{\cos x -1}{x} = \lim_{x \rightarrow 0} \frac{\sqrt{1 - \sin^2 x} -1}{x} = \lim_{x \rightarrow 0} \frac{\sqrt{1 - \sin^2 x} -1}{x} \cdot \frac{\sqrt{1-\sin^2 x} + 1}{\sqrt{1-\sin^2 x} + 1}= \lim_{x \rightarrow 0} \frac{-\sin^2 x}{x \sqrt{1-\sin^2 x} + 1}
=\lim_{x \rightarrow 0} \frac{\sin x}{x} \cdot \frac{-\sin x}{\sqrt{1-\sin^2 x}+1}= (1) \cdot \frac{0}{\sqrt{1-0} + 1} = 0.
(2) \lim_{x \rightarrow 0} \frac{\sin \alpha x}{x} = \lim_{x \rightarrow 0} \frac{\tan \alpha x}{x} = \alpha
Proof.(For sine)
\lim_{x \rightarrow 0} \frac{\sin \alpha x}{x} = \lim_{x \rightarrow 0} \left( \frac{\sin \alpha x}{\alpha x} \cdot \frac{\alpha x}{x} \right) = (1)(\alpha) = \alpha.
(3) \lim_{x \rightarrow 0} \frac{\sin \alpha x}{\sin \beta x} = \lim_{x \rightarrow 0} \frac{\tan \alpha x}{\tan \beta x} = \frac{\alpha}{\beta}
Proof.(For sine)
\lim_{x \rightarrow 0} \frac{\sin \alpha x}{\sin \beta x} = \lim_{x \rightarrow 0} \left( \frac{\sin \alpha x}{\alpha x} \cdot \frac{\alpha x}{\beta x} \cdot \frac{\beta x}{\sin \beta x} \right) = (1)(\alpha / \beta)(1) = \frac{\alpha}{\beta}
--Elucidus