Does Pipe Size Reduction Affect Flow Rate and Pressure Drop Significantly?

AI Thread Summary
Reducing pipe size from 1/2" to 1/4" to connect a 9/16" flow switch can significantly impact flow rate and pressure drop. Calculations indicate a pressure drop of 0.15 psi with a flow rate of 2 l/min, which suggests that while the system can maintain flow, the transition may introduce turbulence and resistance. The Reynolds numbers indicate turbulent flow, which could further complicate pressure management. Using the head loss formula can help quantify the additional pressure needed to maintain the desired flow rate. Overall, careful consideration of pipe sizing and flow dynamics is essential to ensure optimal performance.
JJ1989
Messages
5
Reaction score
0
0http://math.stackexchange.com/questions/946493/solve-for-pressure-drop-across-and-orifice#
I'm running 1/2" pipe but the only way to connect a 9/16" flow switch is with a 1/4" adapter. I'd have to go from 1/2" down to 1/4" to the 9/16" flow switch down to 1/4" back to 1/2".

I was wondering if this would cause a large pressure drop but I used this online calculator and was wondering if anyone could verify these numbers:

Calculation output

Flow medium: Water 20 °C / liquid

Volume flow: 2 l/min

Weight density: 998.206 kg/m³

Dynamic Viscosity: 1001.61 10-6 kg/ms

Element of pipe: Orifice sharp-edged

Dimensions of element: Diameter of pipe D1: .5 in.

Diameter of pipe D2: .25 in.

Velocity of flow: 0.86 ft./s

Reynolds number: 3330

Velocity of flow 2: 3.45 ft./s

Reynolds number 2: 6661

Flow: turbulent

Absolute roughness:

Pipe friction number:

Resistance coefficient: 30.68

Resist.coeff.branching pipe: -

Press.drop branch.pipe: -

Pressure drop: 22.14 lbw./sq.ft.

0.15 psi

I've also looked at a flow rate calculator and was wondering if the down size in the piping would affect the flow rate substantially? I'm really trying to stay at 2L/min.
 
Last edited by a moderator:
Engineering news on Phys.org
JJ1989 said:
0http://math.stackexchange.com/questions/946493/solve-for-pressure-drop-across-and-orifice#
I'm running 1/2" pipe but the only way to connect a 9/16" flow switch is with a 1/4" adapter. I'd have to go from 1/2" down to 1/4" to the 9/16" flow switch down to 1/4" back to 1/2".

I was wondering if this would cause a large pressure drop but I used this online calculator and was wondering if anyone could verify these numbers:

Calculation output

Flow medium: Water 20 °C / liquid

Volume flow: 2 l/min

Weight density: 998.206 kg/m³

Dynamic Viscosity: 1001.61 10-6 kg/ms

Element of pipe: Orifice sharp-edged

Dimensions of element: Diameter of pipe D1: .5 in.

Diameter of pipe D2: .25 in.

Velocity of flow: 0.86 ft./s

Reynolds number: 3330

Velocity of flow 2: 3.45 ft./s

Reynolds number 2: 6661

Flow: turbulent

Absolute roughness:

Pipe friction number:

Resistance coefficient: 30.68

Resist.coeff.branching pipe: -

Press.drop branch.pipe: -

Pressure drop: 22.14 lbw./sq.ft.

0.15 psi

I've also looked at a flow rate calculator and was wondering if the down size in the piping would affect the flow rate substantially? I'm really trying to stay at 2L/min.
Head Loss due to sudden contraction or sudden expansion in area of flow is given by the formula,
hL = (Vs2/2g)×{1-(As/Al)}2
where the subscripts 's' and 'l' denote the flow properties at the smaller area region and the larger area region respectively.
Substitute the values in this equation and you can determine how much extra pressure difference needs to be created to maintain the same flow as the case when there was no variation in area of flow.
 
Last edited by a moderator:
Hi all, I have a question. So from the derivation of the Isentropic process relationship PV^gamma = constant, there is a step dW = PdV, which can only be said for quasi-equilibrium (or reversible) processes. As such I believe PV^gamma = constant (and the family of equations) should not be applicable to just adiabatic processes? Ie, it should be applicable only for adiabatic + reversible = isentropic processes? However, I've seen couple of online notes/books, and...
Thread 'How can I find the cleanout for my building drain?'
I am a long distance truck driver, but I recently completed a plumbing program with Stratford Career Institute. In the chapter of my textbook Repairing DWV Systems, the author says that if there is a clog in the building drain, one can clear out the clog by using a snake augur or maybe some other type of tool into the cleanout for the building drain. The author said that the cleanout for the building drain is usually near the stack. I live in a duplex townhouse. Just out of curiosity, I...
I have an engine that uses a dry sump oiling system. The oil collection pan has three AN fittings to use for scavenging. Two of the fittings are approximately on the same level, the third is about 1/2 to 3/4 inch higher than the other two. The system ran for years with no problem using a three stage pump (one pressure and two scavenge stages). The two scavenge stages were connected at times to any two of the three AN fittings on the tank. Recently I tried an upgrade to a four stage pump...
Back
Top