Double integral e^(ysqrtx)dxdy

Digitalism
Messages
40
Reaction score
7

Homework Statement



∫∫e^(y√x)dxdy from 1 to 4 then from 0 to 2

Homework Equations



∫ e^x = e^x
u substitution

The Attempt at a Solution



I am just curious if this is equal to double integral e^(y\sqrt{x})dydx from 0 to 2 then from 1 to 4. In other words can I change the order of integration without screwing up my function? If so I can solve it. If not I have tried U substitution:

u = y√x
du = y/2√x} dx

which changes my equation to double integral (2√x/y)e^(u)dudy from 1 to 4 then from 0 to 2 which is equal to (2u/y^2)e^(u)dudy from 1 to 4 then from 0 to 2 but I don't see how integrating that will give me 2e^u(u-1)/y^2 which was wolfram alpha's indefinite integration for e^y\sqrt{x}. help?
 
Physics news on Phys.org
Digitalism said:

Homework Statement



∫∫e^(y√x)dxdy from 1 to 4 then from 0 to 2

Homework Equations



∫ e^x = e^x
u substitution

The Attempt at a Solution



I am just curious if this is equal to double integral e^(y\sqrt{x})dydx from 0 to 2 then from 1 to 4. In other words can I change the order of integration without screwing up my function? If so I can solve it. If not I have tried U substitution:

u = y√x
du = y/2√x} dx

which changes my equation to double integral (2√x/y)e^(u)dudy from 1 to 4 then from 0 to 2 which is equal to (2u/y^2)e^(u)dudy from 1 to 4 then from 0 to 2 but I don't see how integrating that will give me 2e^u(u-1)/y^2 which was wolfram alpha's indefinite integration for e^y\sqrt{x}. help?
Assuming you integral is :
\displaystyle \int_0^2\int_1^4 {e^{y\sqrt{x}}}\,dx\,dy​
It should be fine to switch the order of integration.

If you're trying to do the integration in the given order, then remember you need to treat y as a constant as you integrate with respect to x. Remember then to evaluate that as a definite integral over x.
 
thanks! that's what I thought, so now I can solve it
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top