- 4,796
- 32
It's about finding the area of the paraboloid z=x²+y² beneath z=2. The area integral is
\int\int_{\{(u,v): u^2+v^2<2\}}\sqrt{1+4(u^2+v^2)}dudv
A polar change of variable seems to fits nicely:
=\int_0^{\sqrt{2}}\int_0^{2\pi}\sqrt{1+4r^2}rd\theta dr
Then the change of variable \xi=1+4r^2 brings the area to
2\pi\int_1^9\sqrt{\xi}\frac{d\xi}{8}=\frac{2\cdot 2 \pi}{3 \cdot 8}[\xi^{3/2}]_1^9=\frac{13\pi}{3}
Looks good?
\int\int_{\{(u,v): u^2+v^2<2\}}\sqrt{1+4(u^2+v^2)}dudv
A polar change of variable seems to fits nicely:
=\int_0^{\sqrt{2}}\int_0^{2\pi}\sqrt{1+4r^2}rd\theta dr
Then the change of variable \xi=1+4r^2 brings the area to
2\pi\int_1^9\sqrt{\xi}\frac{d\xi}{8}=\frac{2\cdot 2 \pi}{3 \cdot 8}[\xi^{3/2}]_1^9=\frac{13\pi}{3}
Looks good?
Last edited: