Double Integrals and circles - Confirmation Wanted

Nima
Messages
25
Reaction score
0
Hey, my Q is:

"Integrate f(x, y) = Sqrt(x^2 + y^2) over the region in the x-y plane bounded by the circles r = 1 and r = 4 in the upper half-plane".

Well, I firstly sketched out the region I get as my area in the x-y plane. I deduced that the ranges for x and y are:

0 <= x <= 4
Sqrt[1 - x^2] <= y <= Sqrt[16 - x^2]

1.) Is this right?
2.) How do I then calculate the integral of f(x, y) over this region? I know I'm doing a double integral but I don't see how I can separate my variables...

Thanks
 
Physics news on Phys.org
Have you covered polar coordinates?
 
TD said:
Have you covered polar coordinates?
Hi, no unfortunately I haven't covered polar co-ordinates yet.

mmm so yes I see that f(x, y) = r and now we have 2 circles with radii r = 4 and r = 1 respectively.

Could you explain to me how to do this Q if that's ok? Thanks.
 
Just think about it. from what pts are we integrating wrt the radius? Then, what angle to what angle are we integrating (wrt theta). drawing a picture is helpful.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top